Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 057304    DOI: 10.1088/1674-1056/20/5/057304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optically controlled SiCGe/SiC heterojunction transistor with charge-compensation layer

Pu Hong-Bin (蒲红斌), Cao Lin (曹琳), Chen Zhi-Ming (陈治明), Ren Jie (任杰)
Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral response and transient response of the device. Due to utilizing p-SiCGe charge-compensation layer, the responsivity increases nearly two times and breakdown voltage increases 33%. The switching characteristic illustrates that the device is latch-free and its fall time is much longer than the rise time. With an increase of the light power density and wavelength, the rise time and fall time will become shorter and longer, respectively. In terms of carrier lifetime, a compromise should be made between the responsivity and switching speed, the ratio of them reaches maximum value when the minority carrier lifetime equals 90 ns.
Keywords:  SiCGe/SiC      transistor      charge-compensation      responsivity  
Received:  18 May 2010      Revised:  08 January 2011      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
Fund: Project supported by National Natural Science Foundation of China (Grant No. 60876050), Special Scientific Research Project of Shaanxi Provincial Departments of Education, China (Grant No. 08JK367), and the Research Fund for Excellent Doctor Degree Thesis of Xi'an University of Technology, China.

Cite this article: 

Pu Hong-Bin (蒲红斌), Cao Lin (曹琳), Chen Zhi-Ming (陈治明), Ren Jie (任杰) Optically controlled SiCGe/SiC heterojunction transistor with charge-compensation layer 2011 Chin. Phys. B 20 057304

[1] Bhadri P, Sukumaran D and Ye K 2001 IEEE Midwest Symposium on Circuits and Systems Dayton, Ohio, August 14-17, 2001 p. 401
[2] Chen Z M, Pu H B and Fred R 2003 Chin. Phys. Lett. bf20 430
[3] Chen Z M, Pu H B, Wo L M, Lu G, Li L B and Tan C X 2006 Microe. Eng. bf83 170
[4] Li L B, Chen Z M, Lin T, Pu H B, Li Q M and Li J 2007 Chin. Phys. bf16 3470
[5] Li L B, Chen Z M, Lin T, Pu H B, Li J and Li Q M 2008 Surf. Interface Anal. bf40 935
[6] Lin T, Chen Z M, Li J, Li L B, Li Q M and Pu H B 2008 Acta Phys. Sin. bf57 6007 (in Chinese)
[7] Li L B, Chen Z M, Li J, ZhouY Y and Wang J N 2010 J. Lumin. bf130 587
[8] Lü Z, Chen Z M and Pu H B 2005 Chin. Phys. bf14 1255
[9] Zhu F, Chen Z M, Li L B, Zhao S F and Lin T 2009 Chin. Phys. B bf18 4966
[10] Pu H B, Cao L, Ren J, Chen Z M and Nan Y G 2010 J. Semicond. bf31 400 (in Chinese)
[11] Chen X B 1998 5th International Conference Solid-State and Integrated Circuit Technology Beijing, China, Oct. 21--23 1998 p. 141
[12] Patrick H 2004 ATLAS User's Manual (9th ed) (Santa Clara: SILVACO International) p. 1
[13] Chow T P, Zhu L and Losee P 2004 International Journal of High Speed Electronics and Systems bf14 865
[14] Hur J H, Hadizad P, Hummel S R, Dapkus P D, Fetterman H R and Gundersen M A 1990 19th IEEE Power Modulator Symposium, San Diego, California, June 26--28, 1990 p. 325
[15] Zhao J H, Burke T, Larson D, Weiner M, Chin A, Ballingal J M and Yu T H 1993 IEEE Trans. Electron Devices bf40 817
[16] Lis R J, Zhao J H, Zhu L D, Illan J, McAfee S, Burke T, Weiner M, Buchwald W R and Jones K A 1994 IEEE Trans. Electron Devices bf41 809
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[4] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[5] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[8] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[9] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[10] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[11] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[12] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[13] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[14] DC and analog/RF performance of C-shaped pocket TFET (CSP-TFET) with fully overlapping gate
Zi-Xin Chen(陈子馨), Wei-Jing Liu(刘伟景), Jiang-Nan Liu(刘江南), Qiu-Hui Wang(王秋蕙), Xu-Guo Zhang(章徐国), Jie Xu(许洁), Qing-Hua Li(李清华), Wei Bai(白伟), and Xiao-Dong Tang(唐晓东). Chin. Phys. B, 2022, 31(5): 058501.
[15] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
No Suggested Reading articles found!