Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 057301    DOI: 10.1088/1674-1056/20/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of current transport parameters of Ti/4H–SiC MPS diode with inhomogeneous barrier

Song Qing-Wen (宋庆文), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Chen Feng-Ping (陈丰平), Tang Xiao-Yan (汤晓燕)
School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices of Ministry of Education, Xidian University, Xi'an 710071, China
Abstract  The current transport parameters of 4H–SiC merged PiN Schottky (MPS) diode are investigated in a temperature range of 300–520 K. Evaluation of the experimental current–voltage (IV) data reveals the decrease in Schottky barrier height Φb but an increase in ideality factor n, with temperature decreasing, which suggests the presence of an inhomogeneous Schottky barrier. The current transport behaviours are analysed in detail using the Tung's model and the effective area of the low barrier patches is extracted. It is found that small low barrier patches, making only 4.3% of the total contact, may significantly influence the device electrical characteristics due to the fact that a barrier height of 0.968 eV is much lower than the average barrier height 1.39 eV. This shows that ion implantation in the Schottky contact region of MPS structure may result in a poor Ti/4H–SiC interface quality. In addition, the temperature dependence of the specific on-resistance (Ron - sp), T2.14, is determined between 300 K and 520 K, which is similar to that predicted by a reduction in electron mobility.
Keywords:  4H–SiC      MPS      barrier inhomogeneity      specific on-resistance  
Received:  24 October 2010      Revised:  11 December 2010      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61006060) and the 13115 Innovation Engineering of Shanxi Province of China (Grant No. 2008ZDKG-30).

Cite this article: 

Song Qing-Wen (宋庆文), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Chen Feng-Ping (陈丰平), Tang Xiao-Yan (汤晓燕) Investigation of current transport parameters of Ti/4H–SiC MPS diode with inhomogeneous barrier 2011 Chin. Phys. B 20 057301

[1] Poggi A, Moscatelli F, Solmi S, Armigliato A, Belsito L and Nipoti R 2010 Appl. Phys. Lett. 107 044506
[2] Song Q W, Zhang Y M, Zhang Y M, Zhang Q, Guo H, Li Z Y and Wang Z X 2010 Chin. Phys. B 19 047201
[3] Hiyoshi T, Hori T, Suda J and Kimoto T 2008 IEEE Trans. Electron Dev. 55 1841
[4] Song Q W, Zhang Y M, Zhang Y M, Lu H L, Chen F P and Zheng Q L 2009 it Chin. Phys. B 18 5474
[5] Zhu L, Chow T P, Jones K A and Agarwal A 2006 IEEE Trans. Electron Dev. 53 363
[6] Brosselard P, Camara N, Banu V, Jorda X, Vellvehi M, Godignon P and Millan J 2008 IEEE Trans. Electron Dev. 55 1847
[7] Dahlquist F, Svedberg J O, Zetterling C M, Ostling M, Breitholtz B and Lendenmann H 2000 Mater. Sci. Forum. 338--342 1179
[8] Chow T P 2000 Silicon Carbide Power Devices (New York: Academic) pp. 249--298
[9] Porter L M and Davies R F 1995 Mater. Sci. Eng. 34 83
[10] Bozack M 1997 J. Phys. Status Solidi B 202 549
[11] Skromme B J, Luckowski E, Moore K, Bhatnagar M, Weitzel C E, Gehoski T and Ganser D 2000 J. Electron. Mater. 29 376
[12] Tung R T 1992 Phys. Rev. B bf45 13509
[13] Yidiz D E, Altindal S and Kanbur H 2008 J. Appl. Phys. bf 103 124502
[14] Ewing D J, Porter L M, Wahab Q, Ma X, Sudharshan T S, Tumakha S, Gao M and Brillson L J 2007 J. Appl. Phys. 101 114514
[15] Güllü O, Biber M, Duman S and Türüt A 2007 Thin Solid Film 516 7851
[16] Schmitsdorf R F, Kampen T U and Monch W 1997 J. Vac. Sci. Technol. B 15 1221
[17] Roccaforte F, Via F L, Raineri V, Pierobon R and Zanoni E 2003 J. Appl. Phys. 101 9137
[18] Zhu L and Chow T P 2008 IEEE Trans. Electron Dev. bf 55 1857
[19] Roschke M and Schwierz F 2001 IEEE Trans. Electron Dev. 48 1442
[1] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[2] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[3] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[4] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[5] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[6] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[7] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[8] Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2018, 27(4): 047305.
[9] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[10] Improvement of reverse blocking performance in vertical power MOSFETs with Schottky-drain-connected semisuperjunctions
Wei Mao(毛维), Hai-Yong Wang(王海永), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(4): 047306.
[11] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[12] Flow control of micro-ramps on supersonic forward-facing step flow
Qing-Hu Zhang(张庆虎), Tao Zhu(朱涛), Shihe Yi(易仕和), Anping Wu(吴岸平). Chin. Phys. B, 2016, 25(5): 054701.
[13] Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer
Da Ma(马达), Xiao-Rong Luo(罗小蓉), Jie Wei(魏杰), Qiao Tan(谭桥), Kun Zhou(周坤), Jun-Feng Wu(吴俊峰). Chin. Phys. B, 2016, 25(4): 048502.
[14] A uniform doping ultra-thin SOI LDMOS with accumulation-mode extended gate and back-side etching technology
Yan-Hui Zhang(张彦辉), Jie Wei(魏杰), Chao Yin(尹超), Qiao Tan(谭桥), Jian-Ping Liu(刘建平), Peng-Cheng Li(李鹏程), Xiao-Rong Luo(罗小蓉). Chin. Phys. B, 2016, 25(2): 027306.
[15] An ultra-low specific on-resistance trench LDMOS with a U-shaped gate and accumulation layer
Li Peng-Cheng (李鹏程), Luo Xiao-Rong (罗小蓉), Luo Yin-Chun (罗尹春), Zhou Kun (周坤), Shi Xian-Long (石先龙), Zhang Yan-Hui (张彦辉), Lv Meng-Shan (吕孟山). Chin. Phys. B, 2015, 24(4): 047304.
No Suggested Reading articles found!