Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 046601    DOI: 10.1088/1674-1056/20/4/046601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase behaviour of polyethylene knotted ring chains

Wen Xiao-Hui(温晓会)a), Zhang Lin-Xi(章林溪) b)†, Xia A-Gen(夏阿根)a), and Chen Hong-Ping(陈宏平)a)
a Department of Physics, Zhejiang University, Hangzhou 310027, China; b Department of Physics, Wenzhou University, Wenzhou 325027, China
Abstract  The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond <S>2 / (Nb2) and the shape factor <$\delta$*> depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity Cv, and the knotted ring chain undergoes gas-liquid-solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains.
Keywords:  molecular dynamics method      phase transition      polyethylene knotted ring chain  
Received:  18 July 2010      Revised:  03 October 2010      Accepted manuscript online: 
PACS:  66.30.hk (Polymers)  
  82.35.Lr (Physical properties of polymers)  
  87.15.rp (Polymerization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 20574052, 20774066, 20974081, and 20934004), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-05-0538), and the Ph.D. Program Foundation of the Ministry of Education of China (Grant No. 20090101110002).

Cite this article: 

Wen Xiao-Hui(温晓会), Zhang Lin-Xi(章林溪), Xia A-Gen(夏阿根), and Chen Hong-Ping(陈宏平) Phase behaviour of polyethylene knotted ring chains 2011 Chin. Phys. B 20 046601

[1] Rybenkov V V, Cozzarelli N R and Vologodskii A V 1993 Proc. Natl. Acad. Sci. USA 90 5307
[2] Arsuaga J, Vazquez M, McGuirk P, Trigueros S, Sumners D W and Roca J 2005 Proc. Natl. Acad. Sci. USA 102 9165
[3] Matthews R, Louis A A and Yeomans J M 2009 Phys. Rev. Lett. 102 088101
[4] Liu L F, Depew R E and Wang J C 1976 J. Mol. Biol. 106 439
[5] Wasserman S A and Cozzarelli N R 1986 Science 232 951
[6] Wolfson J S, McHugh G L, Hooper D C and Swartz M N 1985 Nucleic Acids Res. 13 6695
[7] Virnau P, Mirny L A and Kardar M 2006 PLoS Comp. Biol. 2 1074
[8] Murzin A G, Brenner S E, Hubbard T and Chothia C 1995 J. Mol. Biol. 247 536
[9] Misaghi S, Galardy P J, Meester W J N, Ovaa H, Ploegh H L and Gaudet R 2005 J. Biol. Chem. 280 1512
[10] Ivanov V A, Paul W and Binder K 1998 J. Chem. Phys. 109 5659
[11] Zhang G Z and Wu C 2001 J. Am. Chem. Soc. 123 1376
[12] Wang X H and Wu C 1999 Macromolecules 32 4299
[13] Kirwan L J, Papastavrou G, Borkovec M and Behrens S H 2004 Nano. Lett. 4 149
[14] Zhou Y Q, Hall C K and Karplus M 1996 Phys. Rev. Lett. 77 2822
[15] Su J Y, Zhang L X and Liang H J 2008 J. Chem. Phys. 129 044905
[16] Su J Y and Zhang L X 2007 Polymer 48 7419
[17] Chang J, Han J, Yang L, Jaffe R L and Yoon D Y 2001 J. Chem. Phys. 115 2831
[18] Foteinopoulou K, Karayiannis N C, Mavrantzas V G and Kröger M 2006 Macromolecules 39 4207
[19] Koyama A, Yamamoto T, Fukao K and Miyamoto Y 2001 J. Chem. Phys. 115 560
[20] Shen Y and Zhang L X 2005 J. Polym. Sci. Part B: Polym. Phys. 43 223
[21] Su J Y and Zhang L X 2008 J. Polym. Sci. Part B: Polym. Phys. 46 370
[22] Lin S L, Numasawa N, Nose T and Lin J P 2007 Macromolecules 40 1684
[23] Jiang S C, Zhang L X, Xia A G, Chen H P and Cheng J 2010 Chin. Phys. B 19 018106
[24] Su J Y and Zhang L X 2008 Chin. Phys. B 17 3115
[25] Jiang S C, Zhang L X, Xia A G and Chen H P 2010 Acta Phys. Sin. 59 4337 (in Chinese)
[26] Wei Y F and Hsiao P Y 2007 J. Chem. Phys. 127 064901
[27] Chen Y T, Zhang Q and Ding J D 2006 J. Chem. Phys. 124 184903
[28] Solc K and Stockmayer W H 1971 J. Chem. Phys. 54 2756
[29] Jagodzinski O, Eisenriegler E and Kremer K 1992 J. Phys. I 2 2243
[30] Zhang L X, Sun T T, Cheng J and Ma H Z 2007 Polymer 48 3013
[31] Wang Y and Zhang L X 2007 J. Polym. Sci. Part B: Polym. Phys. 45 2322
[32] Zhang L X and Su J Y 2006 Polymer 47 735 endfootnotesize
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!