Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 046402    DOI: 10.1088/1674-1056/20/4/046402
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Orientation dependence of structural transition in fcc Al driven under uniaxial compression by atomistic simulations

Li Li(李莉)a), Shao Jian-Li(邵建立)b), Duan Su-Qing(段素青)b)†, and Liang Jiu-Qing(梁九卿)a)
a Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China; b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  By molecular dynamics simulations employing an embedded atom method potential, we have investigated structural transformations in single crystal Al caused by uniaxial strain loading along the [001], [011] and [111] directions. We find that the structural transition is strongly dependent on the crystal orientations. The entire structure phase transition only occurs when loading along the [001] direction, and the increased amplitude of temperature for [001] loading is evidently lower than that for other orientations. The morphology evolutions of the structural transition for [011] and [111] loadings are analysed in detail. The results indicate that only 20% of atoms transit to the hcp phase for [011] and [111] loadings, and the appearance of the hcp phase is due to the partial dislocation moving forward on {111}fcc family. For [011] loading, the hcp phase grows to form laminar morphology in four planes, which belong to the {111}fcc family; while for [111] loading, the hcp phase grows into a laminar structure in three planes, which belong to the {111}fcc family except for the (111) plane. In addition, the phase transition is evaluated by using the radial distribution functions.
Keywords:  single crystal Al      molecular dynamics simulations      uniaxial compression      phase transition  
Received:  21 July 2010      Revised:  15 November 2010      Accepted manuscript online: 
PACS:  64.70.kd (Metals and alloys)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  64.70.K-  
Fund: Project supported by the Science Foundation for Development of Science and Technology of China Academy of Engineering Physics (Grant Nos. 2008B0101008 and 2009A0101004).

Cite this article: 

Li Li(李莉), Shao Jian-Li(邵建立), Duan Su-Qing(段素青), and Liang Jiu-Qing(梁九卿) Orientation dependence of structural transition in fcc Al driven under uniaxial compression by atomistic simulations 2011 Chin. Phys. B 20 046402

[1] Moriarty J A and McMahan A K 1981 Phys. Rev. Lett. 48 809
[2] Lam P K and Cohen M L 1983 Phys. Rev. B 27 5986
[3] Boettger J C and Trickey S B 1996 Phys. Rev. B 53 3007
[4] Tambe M J, Bonini N and Marzari N 2008 Phys. Rev. B 77 172102
[5] Loer T, Sigel T, Eidmann K, Foldes I B, Huller S, Massen J, Tsakiris J D, Witkowski S, Preuss W, Nishimura H, Shiraga H, Kato Y, Nakai S and Endo T 1994 Phys. Rev. Lett. 72 3186
[6] Nellis W J, Moriarty J A, Mitchel A C, Ross M, Dandrea R G, Ashcroft N W, Holmes N C and Gathers R G 1988 Phys. Rev. Lett. 60 1414
[7] Green R G, Luo H and Ruoff A L 1994 Phys. Rev. Lett. 73 2075
[8] Akahama Y, Nishimura M, Kinoshita K and Kawamura H 2006 Phys. Rev. Lett. 96 045505
[9] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 Science 296 1681
[10] Kadau K, Germann T C, Lomdahl P S and Holian B L 2005 Phys. Rev. B 72 064120
[11] Shao J L, Duan S Q, He A M, Qin C S and Wang P 2009 J. Phys: Comdens. Matter 21 245703
[12] Shao J L, Duan S Q, He A M, Qin C S and Wang P 2010 J. Phys: Comdens. Matter 22 355403
[13] Cui X L, Zhu W J, Deng X L, Li Y J and He H L 2006 Acta Phys. Sin. 55 5545 (in Chinese)
[14] Chen Y T, Tang X J and Li Q Z 2010 Chin. Phys. B 19 056402
[15] Li L, Shao J L, Duan S Q and Liang J Q 2010 New J. Phys. 12 033011
[16] Ercolessi F and Adams J B 1994 Europhys. Lett. 26 583
[17] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H 2002 Nature Mater. 1 45
[18] Yamakov V, Wolf D, Phillpot S R and Gleiter H 2002 Acta Mater. 50 5005
[19] Hoffmann K H 1996 Computational Physics (Berlin: Springer) p. 268
[20] Swope W C, Andersen H C, Berens P H and Wilson K R 1982 J. Chem. Phys. 76 637
[21] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950 bibitem 22Irving J H and Kirkwood J G 1950 J. Chem. Phys. 18 817 bibitem 23 Cynn H, Yoo C S, Baer B, Herbe V L, McMahan A K, Nicol M and Carlson S 2001 Phys. Rev. Lett. 86 4552
[24] Fanourgakis G S, Pontikis V and Ze'rah G 2003 Phys. Rev. B 67 094102 endfootnotesize
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!