Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128502    DOI: 10.1088/1674-1056/20/12/128502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improving the field-emission properties of carbon nanotubes by magnetically controlled nickel-electroplating treatment

Zheng Long-Wu(郑隆武), Hu Li-Qin(胡利勤), Xiao Xiao-Jing(肖晓晶), Yang Fan(杨帆), Lin He(林贺), and Guo Tai-Liang(郭太良)
Institute of Optoelectronic Display Technology, School of Physics and Information Engineering, Fuzhou University, Fuzhou 350002, China
Abstract  A novel magnetically controlled Ni-plating method has been developed to improve the field-emission properties of carbon nanotubes (CNTs). The effect of the magnetic field and Ni-electroplating on CNT field-emission properties was investigated, and the results are demonstrated using scanning electron microscopy, J-E and the duration test. After treatment, the turn-on electric field declines from 1.55 to 0.91 V/μm at an emission current density of 100 μA/cm2, and the emission current density increases from 0.011 to 0.34 mA/cm2 at an electric field of 1.0 V/μm. Both the brightness and uniformity of the CNT emission performance are improved after treatment.
Keywords:  carbon nanotubes      magnetic field      field emission      Ni-electroplate  
Received:  19 May 2011      Revised:  28 June 2011      Accepted manuscript online: 
PACS:  85.45.Fd (Field emission displays (FEDs))  
  88.30.rh (Carbon nanotubes)  
  82.45.-h (Electrochemistry and electrophoresis)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03A313) and the Natural Science Foundation of Fujian Province of China (Grant No. 2009J05145).

Cite this article: 

Zheng Long-Wu(郑隆武), Hu Li-Qin(胡利勤), Xiao Xiao-Jing(肖晓晶), Yang Fan(杨帆), Lin He(林贺), and Guo Tai-Liang(郭太良) Improving the field-emission properties of carbon nanotubes by magnetically controlled nickel-electroplating treatment 2011 Chin. Phys. B 20 128502

[1] Iijima S 1991 Nature 354 56
[2] Li Y, Zhu C and Liu X 2002 Diamond Relat. Mater. 11 1845
[3] Shi Y, Zhu C C, Wang Q and Li X 2003 Diamond Relat. Mater. 12 1449
[4] Li J, Lei W, Zhang X, Zhou X, Wang Q, Zhang Y and Wang B 2003 Appl. Surf. Sci. 220 96
[5] Dai J F, Mu X W, Qiao X W, Chen X T and Wang J H 2010 Chin. Phys. B 19 057201
[6] Bai X, Zhang G M, Wang M S, Zhang Z X, Yu J, Zhao X Y, Guo D Z and Xue Z Q 2009 Chin. Phys. B 18 3517
[7] Zhang Y, Cao J X and Yang W 2008 Chin. Phys. B 17 1881
[8] Song L, Liu S, Zhang G M, Liu L F, Ma W J, Liu D F, Zhao X W, Luo S D, Zhang Z X, Xiang Y J, Shen J, Zhou J J, Wang G and Zhou W Y 2006 Chin. Phys. 15 422
[9] Jung M, Eun K Y, Lee J K, Baik Y J, Lee K R and Park J W 2001 Diamond Relat. Mater. 10 1235
[10] Lee C J, Park J, Huh Y and Lee J Y 2001 Chem. Phys. Lett. 343 33
[11] Wang B B, Gu C Z, Dou Y, Wang G J, Li H J and Zhu M K 2003 Chin. Phys. 12 1459
[12] Shi Y S, Zhu C C, Wang Q K and Li X 2003 Diamond Relat. Mater. 12 1449
[13] Kwo J L, Yokoyama M, Wang W C, Chuang F Y and Lin I N 2000 Diamond Relat. Mater. 9 1270
[14] Wang L L, Chen Y W, Chen T, Que W X and Sun Z 2007 Mater. Lett. 61 1265
[15] Choi W B, Jin Y W, Kim H Y, Lee S J, Yun M J, Kang J H, Choi Y S, Park N S, Lee N S and Kim J M 2001 Appl. Phys. Lett. 78 1547
[16] Choi Y S, Choi G S and Kim D J 2006 Electrochem. Solid State Lett. 9 G107
[17] Lim S C, Choi H K, Jeong H J, Song Y I, Kim G Y, Jung K T and Lee Y H 2006 Carbon 44 2809
[18] Jeong H J, Choi H K, Kim G Y, Song Y I, Tong Y, Lim S C and Lee Y H 2006 Carbon 44 2689
[19] Vink T J, Gillied M, Kriege J C and van de Laar H W J J 2003 Appl. Phys. Lett. 83 3552
[20] Kim Y C, Sohn K H, Cho Y M and Yoo E H 2004 Appl. Phys. Lett. 84 5350
[21] Sawada A, Iriguchi M, Zhao W J, Ochiai C, Takai M and Vac J 2003 Sci. Technol. B 21 362
[22] Lee K, Lim S C, Cho Y C and Lee Y H 2008 Appl. Phys. Lett. 93 063101
[23] Lee H J, Lee Y D, Cho W S and Ju B K 2006 Appl. Hhys. Lett. 88 093115
[24] Ning Z H, He Y D and Gao W 2008 Surf. Coating Technol. 202 2139
[25] Fujiwara M, Oki E, Hamada M and Tanimoto Y 2001 J. Phys. Chem. 105 4383
[26] Sharma A, Tripathi B and Vijay Y K 2010 J. Memb. Sci. 361 89
[27] Wang X Q, Wang M and Li Z H 2005 Ultramicroscopy 102 181
[28] Hata K, Takakura A and Saito Y 2001 Surf. Sci. 490 296
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[4] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[7] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[8] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[9] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[10] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[11] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[12] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[13] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[14] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[15] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
No Suggested Reading articles found!