CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Bright blue photoluminescence from a mixed tin and manganese oxide xerogel prepared via sol–hydrothermal–gel process |
Xiang Xia(向霞)a)†, Cheng Xiao-Feng(程晓峰)b), He Shao-Bo(贺少勃)b), Yuan Xiao-Dong(袁晓东)b), Zheng Wan-Guo(郑万国) b), Li Zhi-Jie(李志杰)a),Liu Chun-Ming(刘春明)a), Zhou Wei-Lie(周维列) c), and Zu Xiao-Tao (祖小涛)a) |
a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; b Research Centre of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; c Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148, USA |
|
|
Abstract A new blue photoluminescent material, a mixed tin and manganese oxide xerogel, is prepared via sol-hydrothermal-gel process assisted by citric acid. The composition xerogel exhibits strong blue emission at room temperature, with an emission maximum at 434 nm under short (234 nm) or long-wavelength (343 nm) ultraviolet excitation. The photoluminescent excitation spectrum of the mixed tin and manganese oxide xerogel, monitored at an intensity maximum wavelength of 434 nm of the emission, consists of two excitation peaks at 234 nm and 343 nm. With heat treatment temperature increasing from 110 ℃ to 200 ℃, the blue emission intensity increases remarkably, whereas it is almost completely quenched after being treated at 300 ℃. The carbon impurities in the mixed tin and manganese oxide xerogel, confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, should be responsible for the bright blue photoluminescence.
|
Received: 08 June 2011
Revised: 12 July 2011
Accepted manuscript online:
|
PACS:
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
78.66.Sq
|
(Composite materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904008), Joint Funds of the National Natural Science Foundation of China (Grant No. 11076008), and the Young Scientists Foundation of Sichuan Province of China (Grant No. 2010JQ0006). |
Cite this article:
Xiang Xia(向霞), Cheng Xiao-Feng(程晓峰), He Shao-Bo(贺少勃), Yuan Xiao-Dong(袁晓东), Zheng Wan-Guo(郑万国), Li Zhi-Jie(李志杰), Liu Chun-Ming(刘春明), Zhou Wei-Lie(周维列), and Zu Xiao-Tao (祖小涛) Bright blue photoluminescence from a mixed tin and manganese oxide xerogel prepared via sol–hydrothermal–gel process 2011 Chin. Phys. B 20 127801
|
[1] |
Zhong H, Anurag T, Natalie N F, Wu F, Roy B C, Makoto S, Kenji F, James S S, Steven P D and Shuji N 2007 Appl. Phys. Lett. 90 233504
|
[2] |
Onuma T, Amaike H, Kubota M, Okamoto K, Ohta H, Ichihara J, Takasu H and Chichibu S F 2007 Appl. Phys. Lett. 91 181903
|
[3] |
Armitage R, Yang Q and Weber E R 2005 J. Appl. Phys. 97 073524
|
[4] |
Li Y, Zheng R S, Feng Y C, Liu S H and Niu H B 2006 Chin. Phys. bf 15 702
|
[5] |
Chen Q W, Zhu D L, Zhu C, Wang J and Zhang Y G 2003 Appl. Phys. Lett. bf82 1018
|
[6] |
Averboukh B, Huber R, Cheah K W, Shen Y R, Qin G G, Ma Z C and Zong W H 2002 J. Appl. Phys. 92 3564
|
[7] |
Harris C I, Syvajarvi M, Bergman J P, Kordina O, Henry A, Monemar B and Janzen E 1994 Appl. Phys. Lett. 65 2450
|
[8] |
Wang Q, Gu C Z, Li J J, Wang Z L, Shi C Y, Xu P, Zhu K and Liu Y L 2005 J. Appl. Phys. 97 093501
|
[9] |
Ronald B S, Essoyodou K, Adam M J, Jon W M, Clifford M C and Thomas A S 2007 Appl. Phys. Lett. 91 091909
|
[10] |
Glinka Y D, Lin S H, Hwang L P, Chen Y T and Tolk N H 2001 it Phys. Rev. B 64 085421
|
[11] |
Maciel G S, Biswas A, Kapoor R and Prasad P N 2000 Appl. Phys. Lett. 76 1978
|
[12] |
Hao Y, Meng G, Ye C and Zhang L 2005 Appl. Phys. Lett. 87 033106
|
[13] |
Sagawa N and Uchino T 2005 Appl. Phys. Lett. 87 251923
|
[14] |
Glinka Y D, Lin S H, Hwang L P and Chen Y T 2000 J. Phys. Chem. B 104 8652
|
[15] |
Glinka Y D, Lin S H and Chen Y T 2002 Phys. Rev. B 66 035404
|
[16] |
Lin J and Baerner K 2000 Mater. Lett. 46 86
|
[17] |
Uchino T, Kurumoto N and Sagawa N 2006 Phys. Rev. B 73 233203
|
[18] |
Huang W Y, Ho S W, Kwei T K and Okamoto Y 2002 Appl. Phys. Lett. bf 80 1162
|
[19] |
He H, Wang Y and Tang H 2002 J. Phys: Condens. Matter 14 11867
|
[20] |
Garcia M J, Mondragdn M A, Tkllez S C, Campero A and Castano V M 1995 Mater. Chem. Phys. 41 15
|
[21] |
Fujihara S and Kitta S 2004 Chem. Phys. Lett. 397 479
|
[22] |
Han Y, Lin J and Zhang H 2002 Mater. Lett. 54 389
|
[23] |
Zhou X Y, Ge S H, Han X F, Zuo Y L, Xiao Y H, Wen Z C, Zhang L and Li M J 2009 Chin. Phys. B 18 4025
|
[24] |
Green W H, Le K P, Grey J, Au T T and Sailor M J 1997 Science bf 276 1826
|
[25] |
Hayakawa T, Hiramitsu A and Nogami M 2003 Appl. Phys. Lett. 82 2975
|
[26] |
Li Z, Hou B, Xu Y, Wu D, Sun Y, Hu W and Deng F J 2005 Solid State Chem. 178 1395
|
[27] |
Cheng B, Russell J M, Shi W, Zhang L and Samulski E T 2004 J. Am. Chem. Soc. 126 5972
|
[28] |
Li Z, Shen W, Zhang X, Fang L and Zu X 2008 Coll. Surf. A 327 17
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|