CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Theoretical and experimental investigations of coherent phonon dynamics in sapphire crystal using femto- second time-resolved coherent anti-Stokes Raman scattering |
Du Xin(杜鑫)a)b) , Zhang Ming-Fu(张明福)c), He Xing(何兴)a), Meng Qing-Kun(孟庆琨)a), Song Yun-Fei(宋云飞)a), Yang Yan-Qiang(杨延强)a)†, and Han Jie-Cai(韩杰才)c) |
a Centre for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080, China; b College of Foundation Science, Harbin University of Commerce, Harbin 150028, China; c Centre for Composite Materials, Harbin Institute of Technology, Harbin 150080, China |
|
|
Abstract We report on the theoretical and the experimental investigations of the coherent phonon dynamics in sapphire crystal using the femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) technique. The temporal chirped white-light continuum (WLC) is used for the Stokes pulse, therefore we can perform the selective excitation of the phonon modes without using a complicated laser system. The expected quantum beat phenomenon is clearly observed. The theoretical formulas consist very well with the experimental results. The dephasing times of the excited phonon modes, the wavenumber difference, and the phase shift between the simultaneously excited modes are obtained and discussed. This work opens up a way to study directly high-frequency coherent phonon dynamics in bulk crystals on a femtosecond time scale and is especially helpful for understanding the nature of coherent phonons.
|
Received: 26 February 2011
Revised: 14 June 2011
Accepted manuscript online:
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
42.65.Dr
|
(Stimulated Raman scattering; CARS)
|
|
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
78.47.jh
|
(Coherent nonlinear optical spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20973050). |
Cite this article:
Du Xin(杜鑫), Zhang Ming-Fu(张明福), He Xing(何兴), Meng Qing-Kun(孟庆琨), Song Yun-Fei(宋云飞), Yang Yan-Qiang(杨延强), and Han Jie-Cai(韩杰才) Theoretical and experimental investigations of coherent phonon dynamics in sapphire crystal using femto- second time-resolved coherent anti-Stokes Raman scattering 2011 Chin. Phys. B 20 126301
|
[1] |
Garrett G A, Albrecht T F, Whitaker J F and Merlin R 1996 Phys. Rev. Lett. 77 3661
|
[2] |
Hase M, Mizoguchi K, Harima H, Nakashima S and Sakai K 1998 Phys. Rev. B 58 5448
|
[3] |
Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus G and Dresselhaus M S 1992 Phys. Rev. B 45 768
|
[4] |
Cho G C, Kütt W and Kurz H 1990 Phys. Rev. Lett. 65 764
|
[5] |
Lee I H, Yee K J, Lee K G, Oh E, Kim D S and Lim Y S 2003 J. Appl. Phys. 93 4939
|
[6] |
Hase M, Ishioka K, Kitajima M and Ushida K 2003 Appl. Phys. Lett. 82 3668
|
[7] |
Lim Y S, Yoon S C, Yee K J, Ahn Y H, Oh E and Lee J H 2003 Appl. Phys. Lett. 82 2446
|
[8] |
Chwalek J M, Uher C, Whitaker J F, Mourou G A and Agostinelli J A 1991 Appl. Phys. Lett. 58 980
|
[9] |
Krauss T D and Wise F W 1997 Phys. Rev. Lett. 79 5102
|
[10] |
Kano H and Hamaguchi H 2004 Appl. Phys. Lett. 85 4298
|
[11] |
Wang Y H, Peng Y J, He X, Song Y F and Yang Y Q 2009 Chin. Phys. B bf18 1463
|
[12] |
Heid M, Schlücker S, Schmitt U, Chen T, Schweitzer-Stenner R, Engel V and Kiefer W 2001 J. Raman Spectrosc. 32 771
|
[13] |
Pestov D, Zhi M C, Sariyanni Z E, Kalugin N G, Kolomenskii A, Murawski R, Rostovtsev Y V, Sautenkov V A, Sokolov A V and Scully M O 2006 J. Raman Spectrosc. 37 392
|
[14] |
Meyer S, Schmitt M, Materny A, Kiefer W and Engel V 1997 it Chem. Phys. Lett. 281 332
|
[15] |
Meyer S and Engel V 2000 J. Raman Spectrosc. 31 33
|
[16] |
Schmitt M, Knopp G, Materny A and Kiefer W 1998 J. Phys. Chem. A 102 4059
|
[17] |
Rubner O, Schmitt M, Knopp G, Materny A, Kiefer W and Engel V 1998 J. Phys. Chem. A 102 9734
|
[18] |
Yin J, Yu L Y, Liu X, Wan H, Lin Z Y and Niu H B 2011 Chin. Phys. B 20 014206
|
[19] |
Du X, Zhang M F, Meng Q K, Song Y F, He X, Yang Y Q and Han J C 2010 Opt. Express 18 22937
|
[20] |
Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley)
|
[21] |
Mukamel S 1995 Principles of Nonlinear Optical Spectroscopy (New York: Oxford University Press)
|
[22] |
Zhang S A, Zhang H, Wang Z G and Sun Z R 2010 Chin. Phys. B 19 043201
|
[23] |
Wang G G, Zhang M F, Han J C, He X D, Zuo H B and Yang X H 2008 Cryst. Res. Technol. 43 531
|
[24] |
Aminzadeh A and Sarikhani-fard H 1999 Spectrochim. Acta A 55 1421
|
[25] |
Kadle'hikov'a M, Breza J and Vesel'y M 2001 it Microelectron. J. 32 955
|
[26] |
Laubereau A and Kaiser W 1978 Rev. Mod. Phys. 50 607
|
[27] |
Yu L Y, Yin J, Wan H, Liu X, Qu J L, Niu H B and Lin Z Y 2010 Acta Phys. Sin. 59 5406 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|