Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(4): 1436-1442    DOI: 10.1088/1674-1056/17/4/048
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dephasing of quantum tunnelling in molecular nanomagnets

Zhang Shu-Qun(张树群)a) and Chen Zhi-De(陈芝得)b)†
a Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China; b Department of Physics, Jinan University, Guangzhou 510632, China
Abstract  Dephasing mechanism of quantum tunnelling in molecular magnets has been studied by means of the spin-coherent-state path integral in a mean field approximation. It is found that the fluctuating uncompensated transverse field from the dipolar-dipolar interaction between molecular magnets contributes a random phase to the quantum interference phase. The resulting transition rate is determined by the average tunnel splitting over the random phase. Such a dephasing process leads to the suppression of quenching due to the quantum phase interference, and to the steps due to odd resonances in hysteresis loop survived, which is in good agreement with experimental observations in molecular nanomagnets Fe8 and Mn$_{12}.$
Keywords:  single molecule magnet      quantum tunnelling      dephasing  
Received:  14 September 2007      Revised:  14 October 2007      Accepted manuscript online: 
PACS:  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
  75.30.Gw (Magnetic anisotropy)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.50.Xx (Molecular magnets)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10575045).

Cite this article: 

Zhang Shu-Qun(张树群) and Chen Zhi-De(陈芝得) Dephasing of quantum tunnelling in molecular nanomagnets 2008 Chin. Phys. B 17 1436

[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[3] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[4] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[5] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[6] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[7] Entanglement and non-Markovianity of a spin-S system in a dephasing environment
Fan Zi-Long (范子龙), Tian Jing (田晶), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2014, 23(6): 060303.
[8] Hybrid double-dot qubit measurement with a quantum point contact
Yan Lei (严蕾), Yin Wen (殷雯), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2014, 23(10): 100303.
[9] The mechanism of producing energy-polarization entangled photon pairs in the cavity-quantum electrodynamics scheme
Shu Chang-Gan(束长干), Xin Xia(辛霞), Liu Yu-Min(刘玉敏), Yu Zhong-Yuan(俞重远), Yao Wen-Jie(姚文杰), Wang Dong-Lin(王东林), and Cao Gui(曹贵) . Chin. Phys. B, 2012, 21(4): 044208.
[10] Role of phase fluctuation and dephasing in the enhancing continuous variable entanglement of a two-photon coherent beat laser
Sintayehu Tesfa . Chin. Phys. B, 2012, 21(1): 014204.
[11] Theoretical and experimental investigations of coherent phonon dynamics in sapphire crystal using femto- second time-resolved coherent anti-Stokes Raman scattering
Du Xin(杜鑫), Zhang Ming-Fu(张明福), He Xing(何兴), Meng Qing-Kun(孟庆琨), Song Yun-Fei(宋云飞), Yang Yan-Qiang(杨延强), and Han Jie-Cai(韩杰才) . Chin. Phys. B, 2011, 20(12): 126301.
[12] Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography
Yin Jun(尹君), Yu Ling-Yao(于凌尧), Liu Xing(刘星), Wan Hui(万辉), Lin Zi-Yang(林子扬), and Niu Han-Ben(牛憨笨). Chin. Phys. B, 2011, 20(1): 014206.
[13] Comments on `Enhanced piezoresistivity in Ni-silicone rubber composites'
D. Bloor, A. Graham, P. J. Laughlin, and D. Lussey. Chin. Phys. B, 2010, 19(1): 017001.
[14] Enhanced piezoresistivity in Ni--silicone rubber composites
Chang Fang-Gao(常方高), Yang Feng(杨枫), Wang Shao-Xiang(王少祥), Zhang Na(张娜), and Song Gui-Lin(宋桂林). Chin. Phys. B, 2009, 18(2): 652-657.
[15] The dynamics of triple-well trapped Bose--Einstein condensates with atoms feeding and loss effects
Mu Ai-Xia(穆爱霞), Zhou Xiao-Yan(周小燕), and Xue Ju-Kui(薛具奎). Chin. Phys. B, 2008, 17(3): 764-770.
No Suggested Reading articles found!