Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090303    DOI: 10.1088/1674-1056/24/9/090303
GENERAL Prev   Next  

Phase effect on dynamics of quantum discord modulated by interaction between qubits

Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We study the effects of the interaction strength and the initial phase on the dynamics of quantum discord in a two-qubit system under both spontaneous emission and dephasing noisy channels. It is shown that the time evolution of quantum discord displays quicker oscillations with increasing inter-qubit interaction strength but the effect of the initial phase closely depends on the interaction between the qubits. Only for non-zero inter-qubit interaction cases, the evolution of quantum discord is affected by the initial phase and its oscillating amplitude increases with increasing initial phase. A comparison between evolutions of quantum discord and entanglement is also made.
Keywords:  quantum discord      spontaneous emission      dephasing  
Received:  19 January 2015      Revised:  28 March 2015      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), the Scientific Research Foundation of the Education Department of Hunan Province, China (Grant No. 13C039), and the Construct Program of the National Key Discipline, China.
Corresponding Authors:  Zeng Hao-Sheng     E-mail:  hszeng@hunnu.edu.cn

Cite this article: 

Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生) Phase effect on dynamics of quantum discord modulated by interaction between qubits 2015 Chin. Phys. B 24 090303

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schröinger E 1935 Math. Proc. Camb. Phil. Soc. 31 555
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[5] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys. 84 1655
[6] Spehner D 2014 J. Math. Phys. 55 075211
[7] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[8] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[9] Luo S 2008 Phys. Rev. A 77 042303
[10] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[11] Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[12] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[13] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[14] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[15] Luo S and Fu S 2012 Theor. Math. Phys. 171 870
[16] Ann K and Jaeger G 2009 Found. Phys. 39 790
[17] Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
[18] Ma J, Sun Z, Wang X G and Nori F 2012 Phys. Rev. A 85 062323
[19] Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Process 12 1637
[20] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[21] Ji Y H, Hu J J and Hu Y 2012 Chin. Phys. B 21 110304
[22] Xu Z Y, Yang W L, Xiao X and Feng M 2011 J. Phys. A: Math. Theor. 44 395304
[23] Liu X and Wu W 2014 Chin. Phys. B 23 070303
[24] Yao C M, He Z, Chen Z H and Nie J J 2013 Chin. Phys. Lett. 30 090302
[25] Yu T and Eberly T H 2004 Phys. Rev. Lett. 93 140404
[26] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S and Davidovich L 2007 Science 316 579
[27] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[28] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[29] Fan Z L, Tian J and Zeng H S 2014 Chin. Phys. B 23 060303
[30] Wang C and Chen Q H 2013 Chin. Phys. B 22 040304
[31] Hu Y H and Wang J Q 2012 Chin. Phys. B 21 014203
[32] Qian Y and Xu J B 2012 Chin. Phys. B 21 030305
[33] Guo Y N, Fang M F, Liu X and Yang B Y 2014 Chin. Phys. B 23 034204
[34] Tang N, Cheng W and Zeng H S 2014 Eur. Phys. J. D 68 278
[35] Li Y, Zhou J and Guo H 2009 Phys. Rev. A 79 012309
[36] Han M, Zhang Y J and Xia Y J 2011 Int. J. Quantum Inf. 9 1413
[37] Das S and Agarwal G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 141003
[38] Wang C Z, Li C X, Nie L Y and Li J F 2011 J. Phys. B: At. Mol. Opt. Phys. 44 015503
[39] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[40] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[41] Werner R F 1989 Phys. Rev. A 40 4277
[42] Zhang J S, Chen L, Abdel-Aty M and Chen A X 2012 Eur. Phys. J. D 66 2
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[4] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[5] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[6] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[7] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[8] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[9] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[10] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[11] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[12] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[13] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[14] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[15] Thermal quantum correlations of a spin-1/2 Ising-Heisenberg diamond chain with Dzyaloshinskii-Moriya interaction
Yidan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2018, 27(9): 090306.
No Suggested Reading articles found!