Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 126201    DOI: 10.1088/1674-1056/20/12/126201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab initio study of the electronic structure and elastic properties of Al5C3N

Xu Xue-Wen(徐学文), Hu Long(胡龙), Yu Xiao(宇霄), Lu Zun-Ming(卢遵铭), Fan Ying(范英), Li Yang-Xian(李养贤), and Tang Cheng-Chun(唐成春)
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  We investigate the electronic structure, chemical bonding and elastic properties of the hexagonal aluminum carbonitride, Al5C3N, by ab initio calculations. Al5C3N is a semiconductor with a narrow indirect gap of 0.81 eV. The valence bands below the Fermi level (EF) originate from the hybridized Al p-C p and Al p-N p states. The calculated bulk and Young's moduli are 201 GPa and 292 GPa, which are slightly lower than those of Ti3SiC2. The values of the bulk-to-shear-modulus and bulk-modulus-to-c44 are 1.73 and 1.97, respectively, which are higher than those of Ti2AlC and Ti2AlN, indicating that Al5C3N is a ductile ceramic.
Keywords:  electronic structure      chemical bonding      elastic properties      ductility  
Received:  04 March 2011      Revised:  22 July 2011      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974041) and the Key Project of Science and Technology for Colleges in Hebei Province, China (Grant No. ZD2010120).

Cite this article: 

Xu Xue-Wen(徐学文), Hu Long(胡龙), Yu Xiao(宇霄), Lu Zun-Ming(卢遵铭), Fan Ying(范英), frameLi Yang-Xian(李养贤), and Tang Cheng-Chun(唐成春) Ab initio study of the electronic structure and elastic properties of Al5C3N 2011 Chin. Phys. B 20 126201

[1] Barsoum M W 2000 Prog. Solids St. Chem. 28 201
[2] Barsoum M W and EI-Raghy T 1996 J. Am. Cera. Soc. 79 1953
[3] Barsoum M W, Brodkio D and EI-Raghy T 1997 Scripta Mater. 36 535
[4] Sun Z M, Music D, Ahuja R, Li S and Schneider J M 2004 Phys. Rev. B 70 092102
[5] Sun Z M, Li S, Ahuja R and Schneider J M 2004 Solid State Commun. 129 589
[6] Manoun B, Kulkarni S, Pathak N, Saxena S K, Amina S and Barsoum M W 2010 J. Alloys Compd. 505 328
[7] Wang J Y, Zhou Y C, Lin Z J, Liao T and He L F 2006 Phys. Rev. B 73 134107
[8] Wang J Y, Zhou Y C, Lin Z J and Liao T 2005 Phys. Rev. B 72 052102
[9] Sugiura K, Iwata T, Yoshida H, Hashimoto S and Fukuda K 2008 J. Solid State Chem. 181 2864
[10] Zhang J, Wang J Y and Zhou Y C 2011 J. Mater. Res. 26 372
[11] Yang T X, Cheng Q, Xu H B and Wang Y X 2010 Acta Phys. Sin. 59 4919 (in Chinese)
[12] Fan X J, Li M K, Li C B, Liu F Q and Yin D 2005 Chin. Phys. 14 2287
[13] Chen H C and Yang L J 2011 Acta Phys. Sin. 60 014207 (in Chinese)
[14] Jeffrey G A and Wu Y V 1966 Acta Cryst. 20 538
[15] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[16] Kohn W 1999 Rev. Mod. Phys. 71 1253
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] Milman V and Warren M C 2001 J. Phys.: Condens. Matter 13 241
[20] Zhou Y C, Wang X H, Sun Z M and Chen S Q 2001 J. Mater. Chem. 11 2335
[21] Zhou Y C and Sun Z M 2000 J. Phys.: Condens. Mater 12 L457
[22] Birch F 1978 J. Geophys. Res. 83 1257
[23] Liao T, Wang J Y and Zhou Y C 2006 Phys. Rev. B 74 174112
[24] Holm B, Ahuja R and Johansson B 2001 Appl. Phys. Lett. 79 1450
[25] Wang J Y and Zhou Y C 2004 Phys. Rev. B 69 214111
[26] Wang J Y and Zhou Y C 2004 J. Phys.: Condens. Matter 16 2819
[27] Sun Z M, Music D, Ahuja R and Schneider J M 2005 Phys. Rev. B 71 193402
[28] Cover M F, Warschkow O, Bilek M M M and McKenzie D R 2008 Adv. Eng. Mater. 10 935
[29] Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College)
[30] Nye J F 1957 Physical Properties of Crystals (Oxford: Arendon)
[31] Hill R 1952 Proc. Phys. Soc. A 65 349
[32] Bouhemadou A and Khenta R 2007 J. Appl. Phys. 102 043528
[33] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[34] Pugh S F 1954 Philos. Mag. 45 823
[35] Kittel C 1996 Introduction to Solid State Physics (New York: Wiley)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[12] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!