Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044208    DOI: 10.1088/1674-1056/21/4/044208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The mechanism of producing energy-polarization entangled photon pairs in the cavity-quantum electrodynamics scheme

Shu Chang-Gan(束长干), Xin Xia(辛霞), Liu Yu-Min(刘玉敏), Yu Zhong-Yuan(俞重远), Yao Wen-Jie(姚文杰), Wang Dong-Lin(王东林), and Cao Gui(曹贵)
State Key Laboratory of Information Photonics and Optical Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We investigate theoretically two photon entanglement processes in a photonic-crystal cavity embedding a quantum dot in the strong-coupling regime. The model proposed by Johne et al. (Johne R, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404), and by Robert et al. (Robert J, Gippius N A and Malpuech G 2009 it Phys. Rev. B 79 155317) is modified by considering irreversible dissipation and incoherent continuous pumping for the quantum dot, which is necessary to connect the realistic experiment. The dynamics of the system is analysed by employing the Born-Markov master equation, through which the spectra for the system are computed as a function of various parameters. By means of this analysis the photon-reabsorption process in the strong-coupling regime is first observed and analysed from the perspective of radiation spectrum and the optimal parameters for observing energy-entangled photon pairs are identified.
Keywords:  cavity-quantum electrodynamics scheme      entangled photon pairs      pure dephasing      incoherent pumping  
Received:  20 August 2011      Revised:  28 September 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Bg (Entanglement production and manipulation)  
  03.65.-w (Quantum mechanics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, and 10979065), the Program for New Century Excellent Talents in University (Grant No. NTCE-10-0261), and the Chinese Universities Scientific Fund (Grant No. 2011RC0402).
Corresponding Authors:  Liu Yu-Min,liuyuminhqy@263.net     E-mail:  liuyuminhqy@263.net

Cite this article: 

Shu Chang-Gan(束长干), Xin Xia(辛霞), Liu Yu-Min(刘玉敏), Yu Zhong-Yuan(俞重远), Yao Wen-Jie(姚文杰), Wang Dong-Lin(王东林), and Cao Gui(曹贵) The mechanism of producing energy-polarization entangled photon pairs in the cavity-quantum electrodynamics scheme 2012 Chin. Phys. B 21 044208

[1] O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature (London) 426 264
[2] Knill E, Laflamme R and Milburn G J 2001 Nature (London) 409 46
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 it Phys. Rev. Lett. 76 4656
[5] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[6] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[7] Kwiat P G, Mattle K, Weinfurter H and Zeilinger A 1995 it Phys. Rev. Lett. 75 4337
[8] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature (London) 390 575
[9] Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
[10] Zoller P, Beth Th, Binosi D, Blatt R and Briegel H 2005 it Eur. Phys. J. D 36 203
[11] Benson O, Santori C, Pelton M and Yamamoto Y 2000 Phys. Rev. Lett. 84 2513
[12] Regelman D V, Mizrahi U, Gershoni D, Ehrenfreund E, Schoenfeld W V and Petroff P M 2001 Phys. Rev. Lett. 87 257401
[13] Moreau E, Robert I, Manin L, Thierry-Mieg V, Gérard J M and Abram I 2001 Phys. Rev. Lett. 87 183601
[14] Gammon D, Snow E S, Shanabrook B V, Katzer D S and Park D 1996 Phys. Rev. Lett. 76 3005
[15] Bayer M, Ortner G, Stern O, Kuther A, Gorbunov A A and Forchel A 2002 Phys. Rev. B 65 195315
[16] Hafenbrak R, Ulrich S M, Michler P, Wang L, Rastelli A and Schmidt O G 2007 New J. Phys. 9 315
[17] Young R J, Stevenson R M, Shields A J, Atkinson P, Cooper K and Ritchie D A 2007 J. Appl. Phys. 101 081711
[18] Gywat O, Burkard G and Loss D 2002 Phys. Rev. B 65 205329
[19] Stevenson R M, Young R J, Atkinson P, Cooper K, Ritchie D A and Shields A J 2006 Nature (London) 439 179
[20] Kowalik K, Krebs O, Lema^hitre A, Laurent S, Senellart P, Voisin P and Gaj J A 2005 Appl. Phys. Lett. 86 041907
[21] Vogel M M, Ulrich S M, Hafenbrak R, Michler P, Wang L, Rastelli A and Schmidt O G 2007 Appl. Phys. Lett. 91 051904
[22] Gerardot B D, Seidl S, Dalgarno P A, Warburton R J, Granados D, Garcia J M, Kowalik K, Krebs O, Karrai K, Badolato A and Petroff P M 2007 Appl. Phys. Lett. 90 041101
[23] Seidl S, Kroner M, Högele A, Karrai K, Warburton R J, Badolato A and Petroff P M 2006 Appl. Phys. Lett. 88 203113
[24] Akopian N, Lindner N H, Poem E, Berlatzky Y, Avron J and Gershoni D 2006 Phys. Rev. Lett. 96 130501
[25] Robert J, Gippius N A, Pavlovic G, Solnyshkov D D, Shelykh I A and Malpuech G 2008 Phys. Rev. Lett. 100 240404
[26] Robert J, Gippius N A and Malpuech G 2009 Phys. Rev. B 79 155317
[27] Reithmaier J P, Scek G, Löffler A, Hofmann C, S Kuhn, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature (London) 432 197
[28] Peter E, Senellart P, Martrou D, Lema^hitre A, Hours J, Gérard J M and Bloch J 2005 Phys. Rev. Lett. 95 067401
[29] Laussy F P, del Valle E and Tejedor C 2008 Phys. Rev. Lett. 101 083601
[30] Pathak P K and Hughes S 2009 Phys. Rev. B 79 205416
[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure
Seyyed Hossein Asadpour, G Solookinejad, M Panahi, E Ahmadi Sangachin. Chin. Phys. B, 2016, 25(3): 034205.
[3] Role of incoherent pumping and Er3+ ion concentration on subluminal and superluminal light propagation in Er3+-doped YAG crystal
Seyyed Hossein Asadpour, H. Rahimpour Soleimani. Chin. Phys. B, 2015, 24(1): 014204.
[4] Giant Kerr nonlinearity induced by interacting quantum coherences from decays and incoherent pumping
Bai Yan-Feng (白艳锋), Yang Wen-Xing (杨文星), Han Ding-An (韩定安), Yu Xiao-Qiang (喻小强 ). Chin. Phys. B, 2012, 21(11): 114208.
No Suggested Reading articles found!