Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 118102    DOI: 10.1088/1674-1056/20/11/118102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fabrication and photoluminescence characteristics of In2O3 nanohillocks

Wei He-Lin(魏合林), Zhang Lei(张磊), Liu Zu-Li(刘祖黎), and Yao Kai-Lun(姚凯伦)
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Uniformly distributed polycrystalline indium nanohillocks are synthesized on silicon substrates with Au catalyst by using the radio frequency magnetic sputtering technique. The results show that the Au catalyst plays a key role in the formation of indium nanohillocks. After thermally oxidizing the indium nanohillocks at 500 ℃ in air for 5 h, the indium nanohillocks totally transform into In2O3 nanohillocks. The energy-dispersive X-ray spectroscopy result indicates that many oxygen vacancies and oxygen-indium vacancy pairs exist in the In2O3 nanohillocks. Photoluminescence spectra under an Ne laser excitation at 280 nm show broad emissions at 420 nm and 470 nm with a shoulder at 450 nm related to oxygen vacancies and oxygen-indium vacancies at room temperature.
Keywords:  In2O3 nanohillocks      magnetron sputtering      growth models      low-dimensional alloy surface  
Received:  27 July 2010      Revised:  29 June 2011      Accepted manuscript online: 
PACS:  81.15.Cd (Deposition by sputtering)  
  68.55.-J  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574047) and the Key Program of the National Natural Science Foundation of China (Grant No. 20490210).

Cite this article: 

Wei He-Lin(魏合林), Zhang Lei(张磊), Liu Zu-Li(刘祖黎), and Yao Kai-Lun(姚凯伦) Fabrication and photoluminescence characteristics of In2O3 nanohillocks 2011 Chin. Phys. B 20 118102

[1] Xiao S, Su X R, Li C, Han Y B, Fang G J and Wang Q Q 2008 Chin. Phys. B 17 1291
[2] Huang M H, Wu Y, Feick H, Tran N, Weber E and Yang P 2001 Adv. Mater. 13 113
[3] Gu F, Wang S F, Lü M K, Cheng X F, Liu S W, Zhou G J, Xu D and Yuan D R 2004 J. Cryst. Growth 262 182
[4] Guha P, Kar S and Chaudhuri S 2004 Appl. Phys. Lett. 85 3851
[5] Jia H B, Zhang Y, Chen X H, Shu J, Luo X H, Zhang Z S and Yu D P 2003 Appl. Phys. Lett. 82 4146
[6] Li S Q, Liang Y X and Wang T H 2005 Appl. Phys. Lett. 87 143104
[7] Jeong J S, Lee J Y, Lee C J, An S J and Yi G C 2004 Chem. Phys. Lett. 384 246
[8] Wu X C, Hong J M, Han Z J and Tao Y R 2003 Chem. Phys. Lett. 373 28
[9] Bai Z G, Yu D P, Zhang H Z, Ding Y, Wang Y P, Gai X Z, Hang Q L, Xiong G C and Feng S Q 1999 Chem. Phys. Lett. 303 311
[10] Liang C H, Meng G W, Lei Y, Phillipp F and Zhang L D 2001 Adv. Mater. 13 1330
[11] Zheng M J, Zhang L D, Li G H, Zhang X Y and Wang X F 2001 Appl. Phys. Lett. 79 839
[12] Li X, Wanlass M W, Gessert T A, Emery K A and Coutts T J 1989 Appl. Phys. Lett. 54 2674
[13] Chun H J, Choi Y S, Bae S Y and Park J 2005 Appl. Phys. A: Mater. Sci. & Proce. 81 539
[14] Wei H L, Zhang L, Liu Z L, Huang H C and Zhang X X 2006 J. Cryst. Growth 297 300
[15] Wei H L, Huang H C and Zhang X X 2006 Chin. Phys. Lett. 23 1627
[16] Wei H L, Zhang X X and Huang H C 2006 Chin. Phys. Lett. 23 1880
[17] Wei H L, Huang H C, Woo C H, Zhang X X and Zhou L G 2004 Appl. Phys. Lett. 84 5401
[18] Moriarty P 2001 Rep. Prog. Phys. 64 297
[19] Ohhata Y, Shinoki F and Yoshida S 1979 Thin Solid Films 59 255
[20] Kaleemulla S, Reddy A S, Uthanna S and Reddy P S 2009 J. Alloys Compd. 479 589
[21] Lee M S, Choi W C, Kim E K, Kim C K and Min S K 1996 Thin Solid Films 279 1
[22] Zhou H J, Cai W P and Zhang L D 1999 Appl. Phys. Lett. 75 495
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[4] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[5] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[6] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[7] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[8] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[9] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[10] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[11] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
[12] Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas
Yan Zhao(赵艳), Wei Gao(高伟), Bo Xu(徐博), Ying-Ai Li(李英爱), Hong-Dong Li(李红东), Guang-Rui Gu(顾广瑞), Hong Yin(殷红). Chin. Phys. B, 2016, 25(10): 106801.
[13] Effects of N2/O2 flow rate on the surface properties and biocompatibility of nano-structured TiOxNy thin films prepared by high vacuum magnetron sputtering
Sehrish Saleem, R. Ahmad, Uzma Ikhlaq, R. Ayub, Jin Wei Hong, Xu Rui Zhen, Li Peng Hui, Khizra Abbas, Paul K. Chu. Chin. Phys. B, 2015, 24(7): 075202.
[14] Effect of thermal pretreatment of metal precursor on the properties of Cu2ZnSnS4 films
Wang Wei (王威), Shen Hong-Lie (沈鸿烈), Jin Jia-Le (金佳乐), Li Jin-Ze (李金泽), Ma Yue (马跃). Chin. Phys. B, 2015, 24(5): 056805.
[15] Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications
Gu Jin-Hua (谷锦华), Si Jia-Le (司嘉乐), Wang Jiu-Xiu (王九秀), Feng Ya-Yang (冯亚阳), Gao Xiao-Yong (郜小勇), Lu Jing-Xiao (卢景霄). Chin. Phys. B, 2015, 24(11): 117703.
No Suggested Reading articles found!