Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117304    DOI: 10.1088/1674-1056/20/11/117304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of B and N dopings and H2O adsorption on structural stability and field emission properties of cone-capped carbon nanotubes

Wang Yi-Jun(王益军), Wang Liu-Ding(王六定), Yang Min(杨敏), and Yan Cheng(严诚)
School of Science, Northwestern Polytechnical University, Xi'an 710129, China
Abstract  The effects of B and N dopings and H2O adsorption on the structural stability and the field emission properties of cone-capped carbon nanotubes (CCCNTs) were investigated by using the density-functional theoretical calculation. The adsorption of H2O can increase the structural stability and decrease the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap) of the CCCNTs. The strength of total electric field on the top of the H2O-adsorbed CCCNTs is larger than that of the B-doped and the N-doped CCCNTs, electrons will be emitted primarily from the H2O-adsorbed CCCNTs at the same applied voltage. Therefore, the H2O adsorption can lower the threshold voltage for the CCCNTs. While the B and the N dopings produce opposite effects. The HOMO-LUMO gap of the N-doped CCCNTs is the widest among all the gaps of the CCCNTs.
Keywords:  carbon nanotubes      nitrogen doping      boron doping      H2O adsorption  
Received:  22 June 2011      Revised:  08 August 2011      Accepted manuscript online: 
PACS:  73.63.Fg (Nanotubes)  
  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50771082, 60776822, and 11075135) and the Natural Science Foundation of Shaanxi Education Department, China (Grant No. 09JK807).

Cite this article: 

Wang Yi-Jun(王益军), Wang Liu-Ding(王六定), Yang Min(杨敏), and Yan Cheng(严诚) Effects of B and N dopings and H2O adsorption on structural stability and field emission properties of cone-capped carbon nanotubes 2011 Chin. Phys. B 20 117304

[1] Meyyappan M 2005 Carbon Nanotubes: Science and Applications (California: CRC) p. 223
[2] Peng J, Li Z B, He C S, Chen G H, Wang W L, Deng S Z, Xu N S, Zheng X, Chen G H, Chris J E and Richard G F 2008 J. Appl. Phys. 104 014310
[3] Yu S S, Zheng W T, Wen Q B and Jiang Q 2008 Carbon 46 537
[4] Chen G D, Wang L D, An B, Yang M, Cao D C and Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese)
[5] Charlier J C 2002 Nano Lett. 2 1191
[6] Terrones M, Jorio A, Endo M, Rao A M, Kim Y A, Hayashi T, Terrones H, Charlier J C, Dresselhaus G and Dresselhaus M S 2004 Materials Today 7 30
[7] Wang Y J, Wang L D, Yang M, Liu G Q and Yan C 2010 Acta Phys. Sin. 59 4950 (in Chinese)
[8] Wen Q B, Qiao L, Zheng W T, Zeng Y, Qu C Q, Yua S S and Jiang Q 2008 Physica E 40 890
[9] Maiti A, Andzalm J and Tanpipat N 2001 Phys. Rev. Lett. 87 155502
[10] Gao R P, Pan Z W and Wang Z L 2001 Appl. Phys. Lett. 78 1757
[11] Tang D S, Ci L J, Zhou W Y and Xie S S 2006 Carbon 44 2155
[12] Wei Y, Hu H F, Wang Z Y, Cheng C P, Chen N T and Xie N 2011 Acta Phys. Sin. 60 027307 (in Chinese)
[13] Wang Y J, Wang L D, Yang M and Yan C 2011 Acta Phys. Sin. 60 077303 (in Chinese)
[14] Delley B J 1990 Chem. Phys. 92 508
[15] Heer W A D, Chatelain A and Ugarte D 1995 Science 270 1179
[16] Zhang H, Chen X H, Zhang Z H, Qiu M, Xu L S and Yang Z 2006 Chin. Phys. Soc. 55 2986
[17] Shen L, Wang L, Yang H F, Liu X J and Liu H P 2009 Chin. Phys. B 18 5277
[18] Shtogun Y V and Woods L M 2009 Carbon 47 3252
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[6] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[7] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[8] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[9] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[10] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[11] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[12] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[13] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[14] Structural transitions of SWNT filled with C60 under high pressure
Yong-gang Zou(邹永刚), Li Xu(徐莉), Kun Tian(田锟), He Zhang(张贺), Xiao-hui Ma(马晓辉), Ming-guang Yao(姚明光). Chin. Phys. B, 2016, 25(5): 056101.
[15] Flexible impedance and capacitive tensile load Sensor based on CNT composite
Zubair Ahmad, Kh S Karimov, Farid Touati. Chin. Phys. B, 2016, 25(2): 028801.
No Suggested Reading articles found!