Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017801    DOI: 10.1088/1674-1056/20/1/017801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiband terahertz metamaterial absorber

Gu Chao(顾超)a),Qu Shao-Bo(屈绍波)a)b),Pei Zhi-Bin(裴志斌)a), Xu Zhuo(徐卓)b), Liu Jia(刘嘉)a),and Gu Wei(顾巍) c)
a The College of Science, Air Force University of Engineering, Xi'an 710051, China; b Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; c The Engineering and Technical College of Chengdu University of Technology Department of Computer Science and Technology, Leshan 614300, China
Abstract  This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and 5.06 THz, which are consistent with `fingerprints' of some explosive materials. The retrieved material parameters show that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.
Keywords:  multiband      terahertz      electromagnetic resonance      metamaterial absorber  
Received:  30 March 2010      Revised:  19 May 2010      Accepted manuscript online: 
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60871027, 60901029 and 61071058), the National Basic Research Program of China (Grant No. 2009CB623306) and Key Laboratory of Shaanxi Provincial Synthetic Electronic Information System Foundation, China (Grant No. 200905A).

Cite this article: 

Gu Chao(顾超), Qu Shao-Bo(屈绍波), Pei Zhi-Bin(裴志斌), Xu Zhuo(徐卓), Liu Jia(刘嘉), and Gu Wei(顾巍) Multiband terahertz metamaterial absorber 2011 Chin. Phys. B 20 017801

[1] Veselago V G 1968 wxSov. Phys. Usp.10 509
[2] Shelby R A, Smith D R and Schultz S 2001 wxScience292 77
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 wxScience314 977
[4] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 wxPhys. Rev. Lett.76 4773
[5] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 wxIEEE Trans. Microwave Theory Tech.47 2075
[6] Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J and Hajnal J V 2001 wxScience291 849
[7] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 wxPhys. Rev. Lett.84 4184
[8] Zhang S, Qu S B, Ma H, Xie F and Xu Z 2009 wxActa Phys. Sin.58 3961 (in Chinese)
[9] Gokkavas M, Guven K, Bulu I, Aydin K, Penciu R S, Kafesaki M, Soukoulis C M and Ozbay E 2006 wxPhys. Rev. B73 193103
[10] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 wxScience303 1494
[11] Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T and Soukoulis C M 2004 wxScience306 1351
[12] Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M and Brueck S R J 2005 wxPhys. Rev. Lett.95 137404
[13] Dolling G, Wegener M, Soukoulis C M and Linden S 2007 wxOpt. Lett.32 53
[14] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 wxPhys. Rev. Lett.100 207402
[15] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 wxOpt. Express16 7181
[16] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 wxPhys. Rev. B78 241103(R)
[17] Avitzour Y, Urzhumov Y A and Shvets G 2009 wxPhys. Rev. B79 045131
[18] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 wxPhys. Rev. B79 125104
[19] Wang G Q, Shen J L and Jia Y 2007 wxJ. Appl. Phys.102 013106
[20] Zhou Q L, Zhang C L, Mu K J, Jin B, Zhang L L, Li W W and Feng R S 2008 wxAppl. Phys. Lett.92 101106
[21] Zhang L L, Zhong H, Deng C, Zhang C L and Zhao Y J 2008 wxAppl. Phys. Lett.92 091117
[22] Zhou J F, Zhang L, Tuttle G, Koschny T and Soukoulis C M 2006 wxPhys. Rev. B73 041101
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!