Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017503    DOI: 10.1088/1674-1056/20/1/017503
RAPID COMMUNICATION Prev   Next  

Two-dimensional quantum compass model in a staggered field: some rigorous results

He Pei-Song(何培松)a), You Wen-Long(尤文龙)b), and Tian Guang-Shan(田光善)a)†
a School of Physics, Peking University, Beijing 100871, China; b School of Physics and Technology, Suzhou University, Suzhou 215006, China
Abstract  We study the properties of the two-dimensional quantum compass model in a staggered field. Using the Perron–Fröbenius theorem and the reflection positivity method, we rigorously determine the low energy spectrum of this model and its global ground state $\varPsi_0$. Furthermore, we show that $\varPsi_0$ has a directional long-range order.
Keywords:  multi-orbital degree of freedom      quantum compass model      directional order  
Received:  12 July 2010      Revised:  01 September 2010      Accepted manuscript online: 
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  71.20.Be (Transition metals and alloys)  
Fund: Project supported by the National Science Foundation of China (Grant No. 10874003) and the Ministry of Science and Technology of China (Grant No. 2006CB921300). Y. W. L. is supported by Start-up Funding for Young Faculty Members at Suzhou University, China (Grant Nos. Q3108907 and Q4108907).

Cite this article: 

He Pei-Song(何培松), You Wen-Long(尤文龙), and Tian Guang-Shan(田光善) Two-dimensional quantum compass model in a staggered field: some rigorous results 2011 Chin. Phys. B 20 017503

[1] Goodenough J B 1955 Phys. Rev. 100 564
[2] Tokura Y and Nagaosa N 2000 Science 288 462
[3] Cheong S W 2007 Nature Mater. 6 927
[4] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2008 J. Am. Chem. Soc. bf 30 3296
[5] Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Europhys. Lett. 82 57002
[6] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. bf 25 2215
[7] Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L 2008 em Europhys. Lett. 83 27006
[8] Wen H H, Mu G, Fang L, Yang H and Zhu X Y 2008 Europhys. Lett. 82 17009
[9] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[10] Singh D J and Du M H 2008 Phys. Rev. Lett. 100 237003
[11] Haule K, Shim J H and Kotliar G 2008 Phys. Rev. Lett. 100 226402
[12] Kr"uger F, Kumar S, Zaanen J and van den Brink J 2009 Phys. Rev. B 79 054504
[13] Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
[14] Liu D Y, Chen D M and Zou L J 2009 Chin. Phys. B 18 4497
[15] Daghofer M, Nicholson A, Moreo A and Dagotto E 2010 Phys. Rev. B 81 014511
[16] Kugel K I and Khomskii D I 1973 JETP 37 725
[17] Khomskii D I and Mostovoy M V 2003 J. Phys. A 36 9197
[18] Mishra A, Ma M, Zhang F C, Guertler S, Tang L H and Wan S L 2004 Phys. Rev. Lett. 93 207201
[19] Batista C and Nussinov Z 2005 Phys. Rev. B 72 045137
[20] Dorier J, Becca F and Mila F 2005 Phys. Rev. B 72 024448
[21] Chen H D, Fang C, Hu J P and Yao H 2007 Phys. Rev. B 75 144401
[22] Zhao E H and Liu M V 2008 Phys. Rev. Lett. 100 160403
[23] Wenzel S and Janke W 2008 Phys. Rev. B 78 064402
[24] Orus R, Doherty A C and Vidal G 2009 Phys. Rev. Lett. 102 077203
[25] Brzezicki W, Dziarmaga J and Ole's A M 2007 Phys. Rev. B 75 134415
[26] You W L and Tian G S 2008 Phys. Rev. B 78 184406
[27] Sun K W, Zhang Y Y and Chen Q H 2009 Phys. Rev. B 79 104429
[28] Eriksson E and Johannesson H 2009 Phys. Rev. B 79 224424
[29] Sun K W and Chen Q H 2009 Phys. Rev. B 80 174417
[30] Wang L C and Yi X X 2010 Eur. Phys. J. D 57 281
[31] Biskup M, Chayes L and Kivelson S A 2004 Ann. Henri Poincar'e 5 1181
[32] Douccot B, Feigel'man M V, Ioffe L B and Ioselevich A S 2005 Phys. Rev. B 71 024505
[33] Milman P, Maineult W, Guibal S, Guidoni L, Douccot B, Ioffe L and Coudreau T 2007 Phys. Rev. Lett. 99 020503
[34] Nussinov Z and Fradkin E 2005 Phys. Rev. B 71 195120
[35] Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-Relativistic Theory (3rd ed) (Oxford: Pergamon Press) p28
[36] Franklin J 1968 Matrix Theory (New Jersey: Prentice Hall) p177
[37] Dyson F J, Lieb E H and Simon B 1978 J. Stat. Phys. 18 335
[38] You W L, Tian G S and Lin H Q 2010 J. Phys. A 43 275001
[39] Yang C N 1961 Rev. Mod. Phys. 34 694
[40] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press) p411
[41] Lieb E H and Nachtergaele B 1995 Phys. Rev. B 51 4777 endfootnotesize
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[3] Structure and frustrated magnetism of the two-dimensional triangular lattice antiferromagnet Na2BaNi(PO4)2
Fei Ding(丁飞), Yongxiang Ma(马雍翔), Xiangnan Gong(公祥南), Die Hu(胡蝶), Jun Zhao(赵俊), Lingli Li(李玲丽), Hui Zheng(郑慧), Yao Zhang(张耀), Yongjiang Yu(于永江), Lichun Zhang(张立春), Fengzhou Zhao(赵风周), and Bingying Pan(泮丙营). Chin. Phys. B, 2021, 30(11): 117505.
[4] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[5] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[8] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[9] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[10] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[11] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[12] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[13] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[14] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[15] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
No Suggested Reading articles found!