|
|
Two-dimensional quantum compass model in a staggered field: some rigorous results |
He Pei-Song(何培松)a), You Wen-Long(尤文龙)b), and Tian Guang-Shan(田光善)a)† |
a School of Physics, Peking University, Beijing 100871, China; b School of Physics and Technology, Suzhou University, Suzhou 215006, China |
|
|
Abstract We study the properties of the two-dimensional quantum compass model in a staggered field. Using the Perron–Fröbenius theorem and the reflection positivity method, we rigorously determine the low energy spectrum of this model and its global ground state $\varPsi_0$. Furthermore, we show that $\varPsi_0$ has a directional long-range order.
|
Received: 12 July 2010
Revised: 01 September 2010
Accepted manuscript online:
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
Fund: Project supported by the National Science Foundation of China (Grant No. 10874003) and the Ministry of Science and Technology of China (Grant No. 2006CB921300). Y. W. L. is supported by Start-up Funding for Young Faculty Members at Suzhou University, China (Grant Nos. Q3108907 and Q4108907). |
Cite this article:
He Pei-Song(何培松), You Wen-Long(尤文龙), and Tian Guang-Shan(田光善) Two-dimensional quantum compass model in a staggered field: some rigorous results 2011 Chin. Phys. B 20 017503
|
[1] |
Goodenough J B 1955 Phys. Rev. 100 564
|
[2] |
Tokura Y and Nagaosa N 2000 Science 288 462
|
[3] |
Cheong S W 2007 Nature Mater. 6 927
|
[4] |
Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2008 J. Am. Chem. Soc. bf 30 3296
|
[5] |
Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Europhys. Lett. 82 57002
|
[6] |
Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. bf 25 2215
|
[7] |
Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L 2008 em Europhys. Lett. 83 27006
|
[8] |
Wen H H, Mu G, Fang L, Yang H and Zhu X Y 2008 Europhys. Lett. 82 17009
|
[9] |
Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
|
[10] |
Singh D J and Du M H 2008 Phys. Rev. Lett. 100 237003
|
[11] |
Haule K, Shim J H and Kotliar G 2008 Phys. Rev. Lett. 100 226402
|
[12] |
Kr"uger F, Kumar S, Zaanen J and van den Brink J 2009 Phys. Rev. B 79 054504
|
[13] |
Lee C C, Yin W G and Ku W 2009 Phys. Rev. Lett. 103 267001
|
[14] |
Liu D Y, Chen D M and Zou L J 2009 Chin. Phys. B 18 4497
|
[15] |
Daghofer M, Nicholson A, Moreo A and Dagotto E 2010 Phys. Rev. B 81 014511
|
[16] |
Kugel K I and Khomskii D I 1973 JETP 37 725
|
[17] |
Khomskii D I and Mostovoy M V 2003 J. Phys. A 36 9197
|
[18] |
Mishra A, Ma M, Zhang F C, Guertler S, Tang L H and Wan S L 2004 Phys. Rev. Lett. 93 207201
|
[19] |
Batista C and Nussinov Z 2005 Phys. Rev. B 72 045137
|
[20] |
Dorier J, Becca F and Mila F 2005 Phys. Rev. B 72 024448
|
[21] |
Chen H D, Fang C, Hu J P and Yao H 2007 Phys. Rev. B 75 144401
|
[22] |
Zhao E H and Liu M V 2008 Phys. Rev. Lett. 100 160403
|
[23] |
Wenzel S and Janke W 2008 Phys. Rev. B 78 064402
|
[24] |
Orus R, Doherty A C and Vidal G 2009 Phys. Rev. Lett. 102 077203
|
[25] |
Brzezicki W, Dziarmaga J and Ole's A M 2007 Phys. Rev. B 75 134415
|
[26] |
You W L and Tian G S 2008 Phys. Rev. B 78 184406
|
[27] |
Sun K W, Zhang Y Y and Chen Q H 2009 Phys. Rev. B 79 104429
|
[28] |
Eriksson E and Johannesson H 2009 Phys. Rev. B 79 224424
|
[29] |
Sun K W and Chen Q H 2009 Phys. Rev. B 80 174417
|
[30] |
Wang L C and Yi X X 2010 Eur. Phys. J. D 57 281
|
[31] |
Biskup M, Chayes L and Kivelson S A 2004 Ann. Henri Poincar'e 5 1181
|
[32] |
Douccot B, Feigel'man M V, Ioffe L B and Ioselevich A S 2005 Phys. Rev. B 71 024505
|
[33] |
Milman P, Maineult W, Guibal S, Guidoni L, Douccot B, Ioffe L and Coudreau T 2007 Phys. Rev. Lett. 99 020503
|
[34] |
Nussinov Z and Fradkin E 2005 Phys. Rev. B 71 195120
|
[35] |
Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-Relativistic Theory (3rd ed) (Oxford: Pergamon Press) p28
|
[36] |
Franklin J 1968 Matrix Theory (New Jersey: Prentice Hall) p177
|
[37] |
Dyson F J, Lieb E H and Simon B 1978 J. Stat. Phys. 18 335
|
[38] |
You W L, Tian G S and Lin H Q 2010 J. Phys. A 43 275001
|
[39] |
Yang C N 1961 Rev. Mod. Phys. 34 694
|
[40] |
Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press) p411
|
[41] |
Lieb E H and Nachtergaele B 1995 Phys. Rev. B 51 4777 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|