Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017305    DOI: 10.1088/1674-1056/20/1/017305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of resistive switching behaviours in WO3-based RRAM devices

Li Ying-Tao(李颖弢)a)b),Long Shi-Bing(龙世兵)b),Lü Hang-Bing(吕杭炳) b), Liu Qi(刘琦)b), Wang Qin(王琴)b), Wang Yan(王艳)a)b),Zhang Sen(张森)b), Lian Wen-Tai(连文泰)b), Liu Su(刘肃)a),and Liu Ming(刘明)b)
a Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China; Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.
Keywords:  resistive random access memory      resistive switching      nonvolatile      WO3  
Received:  13 July 2010      Revised:  02 August 2010      Accepted manuscript online: 
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  73.50.-h (Electronic transport phenomena in thin films)  
  72.80.Sk (Insulators)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2008CB925002 and 2010CB934200), the National Natural Science Foundation of China (Grant Nos. 60825403 and 50972160) and the National High Technology Research and Development Program of China (Grant No. 2009AA03Z306).

Cite this article: 

Li Ying-Tao(李颖弢), Long Shi-Bing(龙世兵), Lü Hang-Bing(吕杭炳), Liu Qi(刘琦), Wang Qin(王琴), Wang Yan(王艳), Zhang Sen(张森), Lian Wen-Tai(连文泰), Liu Su(刘肃), and Liu Ming(刘明) Investigation of resistive switching behaviours in WO3-based RRAM devices 2011 Chin. Phys. B 20 017305

[1] Waser R and Aono M 2007 wxNat. Mater.6 833
[2] Tsunoda K, Kinoshita K, Noshiro H, Yamazaki Y, Jizuka T, Ito Y, Takahashi A, Okano A, Sato Y, Fukano T, Aoki M and Sugiyama Y 2007 wxIEDM Tech. Dig. 767
[3] Gang J L, Li S L, M Y, Liao Z L, Liang X J and Chen D M 2009 wxActa Phys. Sin.58 5730 (in Chinese)
[4] Choi S J, Lee J H, Yang W Y, Kim T W and Kim K H 2009 wxIEEE Electron Device Lett.30 451
[5] Kund M, Beitel G, Pinnow C U, R"ohr T, Schumann J, Symanczyk R, Ufert K D and M"uller G 2005 wxIEDM Tech. Dig. 754
[6] Russo U, Kamalanathan D, Ielmini D, Lacaita A L and Kozicki M N 2009 wxIEEE Trans. Electron Devices56 1040
[7] Schindler C, Thermadam S C P, Waser R and Kozicki M N 2007 wxIEEE Trans. Electron Devices 54 2762
[8] Meng Y , Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W and Chen D M 2010 wxChin. Phys. B19 037304
[9] Kozicki M N, Gopalan C, Balakrishnan M and Mitkova M 2006 wxIEEE Trans. Nanotechnology5 535
[10] Chien W C, Chen Y C, Lai E K, Yao Y D, Lin P, Horng S F, Gong J, Chou T H, Lin H M, Chang M N, Shih Y H, Hsieh K Y, Liu R and Lu C Y 2010 wxIEEE Electron Device Lett.31 126
[11] Ho C H, Lai E K, Lee M D, Pan C L, Yao Y D, Hsieh K Y, Liu R and Lu C Y 2007 wxSymp. VLSI Tech. 228
[12] Choi B J, Choi S, Kim K M, Shin Y C, Hwang C S, Hwang S Y, Cho S S, Park S and Hong S K 2006 wxAppl. Phys. Lett.89 012906
[13] Choi H, Pyun M, Kim T W, Hasan M, Dong R, Lee J, Park J B, Yoon J, Seong D J, Lee T and Hwang H 2009 wxIEEE Electron Device Lett.30 302
[14] Wang Z, Griffin P B, McVittie J, Wong S, McIntyre P C and Nishi Y 2007 wxIEEE Electron Device Lett.28 14
[15] Lin C Y, Wu C Y, Wu C Y, Lin C C and Tseng T Y 2007 wxThin Solid Films516 444
[16] Schindler C, Meier M and Waser R 2007 wxProc. IEEE NVMTS 82
[17] Rohde C, Choi B J, Jeong D S, Choi S, Zhao J S and Hwang C S 2005 wxAppl. Phys. Lett.86 262907
[18] Guan W H, Long S B, Liu Q, Liu M and Wang W 2008 wxIEEE Electron Device Lett.29 434
[19] Pi C, Ren Y and Chim W K 2010 wxNanotechnology21 085709
[20] Schindler C, Staikov G and Waser R 2009 wxAppl. Phys. Lett.94 072109
[21] Chen L, Li Q C, Guo H X, Gao L G, Xia Y D, Yin J and Liu Z G 2009 wxAppl. Phys. Lett.95 242106
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[3] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[4] Flexible and degradable resistive switching memory fabricated with sodium alginate
Zhuang-Zhuang Li(李壮壮), Zi-Yang Yan(严梓洋), Jia-Qi Xu(许嘉琪), Xiao-Han Zhang(张晓晗), Jing-Bo Fan(凡井波), Ya Lin(林亚), and Zhong-Qiang Wang(王中强). Chin. Phys. B, 2021, 30(4): 047302.
[5] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[6] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[7] Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device
Jin-Long Jiao(焦金龙), Qiu-Hong Gan(甘秋宏), Shi Cheng(程实), Ye Liao(廖晔), Shao-Ying Ke(柯少颖), Wei Huang(黄巍), Jian-Yuan Wang(汪建元), Cheng Li(李成), and Song-Yan Chen(陈松岩). Chin. Phys. B, 2021, 30(11): 118701.
[8] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[9] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[10] Improvement of memory characteristics by employing a charge trapping layer with combining bent and flat energy bands
Zhen-Jie Tang(汤振杰), Rong Li(李荣), Xi-Wei Zhang(张希威). Chin. Phys. B, 2020, 29(4): 047701.
[11] Electro-optical dual modulation on resistive switching behavior in BaTiO3/BiFeO3/TiO2 heterojunction
Jia-Jia Zhao(赵佳佳), Jin-Shuai Zhang(张金帅), Feng Zhang(张锋), Wei Wang(王威), Hai-Rong He(何海蓉), Wang-Yang Cai(蔡汪洋), Jin Wang(王进). Chin. Phys. B, 2019, 28(12): 126801.
[12] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[13] Improved performance of Au nanocrystal nonvolatile memory by N2-plasma treatment on HfO2 blocking layer
Chen Wang(王尘), Yi-Hong Xu(许怡红), Song-Yan Chen(陈松岩), Cheng Li(李成), Jian-Yuan Wang(汪建元), Wei Huang(黄巍), Hong-Kai Lai(赖虹凯), Rong-Rong Guo(郭榕榕). Chin. Phys. B, 2018, 27(6): 067303.
[14] Bias polarity-dependent unipolar switching behavior in NiO/SrTiO3 stacked layer
Xian-Wen Sun(孙献文), Cai-Hong Jia(贾彩虹), Xian-Sheng Liu(刘献省), Guo-Qiang Li(李国强), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2018, 27(4): 047304.
[15] Characteristic modification by inserted metal layer and interface graphene layer in ZnO-based resistive switching structures
Hao-Nan Liu(刘浩男), Xiao-Xia Suo(索晓霞), Lin-Ao Zhang(张林奥), Duan Zhang(张端), Han-Chun Wu(吴汉春), Hong-Kang Zhao(赵宏康), Zhao-Tan Jiang(江兆潭), Ying-Lan Li(李英兰), Zhi Wang(王志). Chin. Phys. B, 2018, 27(2): 027104.
No Suggested Reading articles found!