|
|
Theoretical study of stereodynamics for the O(3P) + H2 → OH + H reaction |
Liu Shi-Li(刘世莉) and Shi Ying(石英)† |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract This paper employs the quasi-classical trajectory calculations to study the influence of collision energy on the title reaction on the potential energy surface of the ground 3A' triplet state developed by Rogers et al. (J. Phys. Chem. A 2000 104 2308). It calculates the product angular distribution of $P( {\theta _{\rm r} } )$, $P( {\phi _{\rm r} } )$ and $P( {\theta _{r}, \phi _{\rm r} } )$ which reflects vector correlation. The distribution $P( {\theta _{\rm r} } )$ shows that product rotational angular momentum vectors j$'$ of the products are strongly aligned along the relative velocity direction k. The distribution of $P( {\phi _{\rm r} } )$ implies a preference for left-handed product rotation in planes parallel to the scattering plane. Four different polarisation-dependent cross-sections are also presented in the centre-of-mass frame. Results indicate that {OH} is sensitively affected by collision energies of H$_{2}$.
|
Received: 01 June 2010
Revised: 28 July 2010
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by Jilin University, China (Grant No. 419080106440). |
Cite this article:
Liu Shi-Li(刘世莉) and Shi Ying(石英) Theoretical study of stereodynamics for the O(3P) + H2 → OH + H reaction 2011 Chin. Phys. B 20 013404
|
[1] |
Glassman 1987 Combustion (New York: Academic) p56
|
[2] |
Balakrishnan N 2004 Geophys. Res. Lett. 31 L04106
|
[3] |
Reynard L M and Donaldson D J 2001 Geophys. Res. Lett. 28 2157
|
[4] |
Marcus R A 2004 J. Chem. Phys. 121 8201
|
[5] |
Graff M M and Dalgarno A 1987 Astrophys. J. 317 432
|
[6] |
Presser N and Gordon R J 1985 J. Chem. Phys. 82 1291
|
[7] |
Garton D J, Minton T K, Maiti B, Troya D and Schatz G C 2003 J. Chem. Phys 118 1585
|
[8] |
Robie D C, Arepalli S, Presser N, Kitsopoulos T and Gordon R J 1987 Chem. Phys. Lett. 134 579
|
[9] |
Robie D C, Arepalli S, Presser N, Kitsopoulos T and Gordon R J 1990 J. Chem. Phys. 92 7382
|
[10] |
Marshall P and Fontijn A 1987 J. Chem. Phys. 87 6988
|
[11] |
Han J D, Chen X R and Weiner Brad R 2000 Chem. Phys. Lett. 332 243
|
[12] |
Yang H X, Shin K S and Gardiner W 1993 Chem. Phys. Lett. 207 69
|
[13] |
Dixon-Lewis G and Williams D J 1977 Compr. Chem. Kinet. 17 1
|
[14] |
Rogers S, Wang D S, Kuppermann A and Walch S 2000 J. Phys. Chem. A 104 2308
|
[15] |
Maiti B and Schatz G C 2003 J. Chem. Phys. 119 12360
|
[16] |
Clary D C and Connor J N L 1980 Mol. Phys. 41 689
|
[17] |
Chu T S, Zhang X and Han K L 2005 J. Chem. Phys. 122 214301
|
[18] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[19] |
Balakrishnan N 2003 J. Chem. Phys. 119 195
|
[20] |
Sultanov R A and Balakrishnan N 2004 J. Chem. Phys. 121 11038
|
[21] |
Braunstein M, Adler-Golden S, Maiti B and Schatz G C 2004 J. Chem. Phys. 120 4316
|
[22] |
Pettey L R and Wyatt R E 2008 J. Phys. Chem. A 112 13335
|
[23] |
Wei Q, Li X and Li T 2010 Chem. Phys. 368 58
|
[24] |
Truhlar D G and Muckerman J T In: Bernstein R B (eds.) 1979 A Guide for the Experimentalist (New York: Plenum Press) p505
|
[25] |
Murrell J N, Caner S, Farantos S C, Huxley P and Varandas A J C 1984 Molecular Potential Energy Functions (New York: Wiley) p29
|
[26] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[27] |
Prisant M G, Rettner C T and Zare R N 1981 J. Chem. Phys. 75 2222
|
[28] |
Liu Y F, Meng H Y and Han K L 2005 Chem. Phys. 309 223
|
[29] |
Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
|
[30] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[31] |
Liu Y F, Gao Y L, Shi D H and Sun J F 2009 Chem. Phys. 364 46
|
[32] |
Xu W W, Liu X G and Zhang Q G 2008 Mol. Phys. 106 1787
|
[33] |
Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
|
[34] |
Brouard M, Lambert H M, Rayner S P and Simons J P 1996 Mol. Phys. 89 403
|
[35] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[36] |
Wei Q, Li X and Li T 2009 Chin. J. Chem. Phys. 22 523
|
[37] |
Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
|
[38] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[39] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[40] |
Kong H, Liu X G, Xu W W and Zhang Q G 2009 Chin. Phys. Lett. 26 053102
|
[41] |
Duan L H, Zhang W Q, Xu X S, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
|
[42] |
Zhao J, Xu Y, Zhao X and Meng Q T 2010 Sci. China Chem. 53 927
|
[43] |
Zhao J, Xu Y and Meng Q T 2009 Can. J. Phys. 87 1247
|
[44] |
Zhao J, Xu Y and Meng Q T 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165006
|
[45] |
Zhang C H, Zhang W Q and Chen M D 2009 JTCC 8 403 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|