CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Negative differential resistance behaviour in N-doped crossed graphene nanoribbons |
Chen Ling-Na(陈灵娜)a)b), Ma Song-Shan(马松山)a), Ouyang Fang-Ping(欧阳方平)a), Wu Xiao-Zan(伍小赞)a), Xiao Jin(肖金)a), and Xu Hui(徐慧)a)† |
a School of Physics Science and Technology, Central South University, Changsha 410083, China; b School of Computer Science and Technology, University of South China, Hengyang 421001, China |
|
|
Abstract By using first-principles calculations and nonequilibrium Green's function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested.
|
Received: 22 March 2010
Revised: 06 April 2010
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10325415 and 50504017), the Natural Science Foundation of Hunan Province, China (Grant No. 07JJ3102), and the Science Develop Foundation of Central South University, China (Grant Nos. 08SDF02 and 09SDF09). |
Cite this article:
Chen Ling-Na(陈灵娜), Ma Song-Shan(马松山), Ouyang Fang-Ping(欧阳方平), Wu Xiao-Zan(伍小赞), Xiao Jin(肖金), and Xu Hui(徐慧) Negative differential resistance behaviour in N-doped crossed graphene nanoribbons 2010 Chin. Phys. B 19 097301
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Filrsov A A 2004 Science 306 666
|
[2] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[3] |
Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
|
[4] |
Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Lit B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
|
[5] |
Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B 19 037202
|
[6] |
Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
|
[7] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 972 16803
|
[8] |
Rosales L, Pacheco M, Barticevic Z, Latgé A and Orellana P A 2009 Nanotechnology 20 095705
|
[9] |
Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
|
[10] |
Zhou B H, Duan Z G, Zhou B L and Zhou G H 2010 Chin. Phys. B 19 037204
|
[11] |
Dutta S, Manna A K and Pati S K 2009 Phys. Rev. Lett. 102 096601
|
[12] |
Li Y, cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 186401
|
[13] |
Ren H, Li Q X, Luo Y and Yang J L 2009 Appl. Phys. Lett. 94 173110
|
[14] |
Pati R, McClain M and Bandyopadhyay A 2008 Phys. Rev. Lett. 100 246801
|
[15] |
Zhang X J, Long M Q, Chen K Q, Shuai Z, Wan Q, Zou B S and Zhang Y 2009 Appl. Phys. Lett. 94 073503
|
[16] |
Fan Z Q, Chen K Q, Wan Q, Zou B S, Duan W H and Shuai Z 2008 Appl. Phys. Lett. 92 263304
|
[17] |
Kim W Y, Kwon S K and Kim K S 2007 Phys. Rev. B 76 033415
|
[18] |
Zhang Y, Zhang Y and Zeng Y P 2008 Chin. Phys. B 17 4645
|
[19] |
Chen J S, Xu L L, Lin J, Geng Y H, Wang L X and Ma D G 2006 Semicond. Sci. Technol. 21 1121
|
[20] |
Su Z S, Fung M K, Lee C S, Li W L and Lee S T 2008 Appl. Phys. Lett. 93 083301
|
[21] |
Dimitrakis P, Normand P, Tsoukalas D, Pearson C, Ahn J H, Mabrook M F, Zeze D A, Petty M C, Kamtekar K T, Wang C S, Bryce M R and Green M 2008 J. Appl. Phys. 104 044510
|
[22] |
McWhorter A L and Foyt A G 1966 Appl. Phys. Lett. 9 300
|
[23] |
Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
|
[24] |
Chen L, Hu Z, Zhao A, Wang B, Luo Y, Yang J and Hou J G 2007 Phys. Rev. Lett. 99 146803
|
[25] |
Li X F, Chen K Q, Wang L L, Long M Q, Zou B S and Shuai Z 2007 J. Appl. Phys. 101 064514
|
[26] |
Cornil J, Karzazi Y and Bredas J L 2002 J. Am. Chem. Soc. 124 3516
|
[27] |
Ouyang F P, Xiao J, Guo R, Zhang H and Xu H 2009 Nanotechnology 20 055202
|
[28] |
Sahin H and Senger R T 2008 Phys. Rev. B 78 205423
|
[29] |
Yan J Y, Zhang P, Sun B, Lu H Z, Wang Z G, Duan S Q and Zhao X G 2009 Phys. Rev. B 79 115403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|