Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097201    DOI: 10.1088/1674-1056/19/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal annealing induced photocarrier radiometry enhancement for ion implanted silicon wafers

Liu Xian-Ming(刘显明)a)b), Li Bin-Cheng(李斌成)a), and Huang Qiu-Ping(黄秋萍)a)b)
a Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
Abstract  An experimental study on the photocarrier radiometry signals of As+ ion implanted silicon wafers before and after rapid thermal annealing is performed. The dependences of photocarrier radiometry amplitude on ion implantation dose (1×1011–1×1016/cm2), implantation energy (20–140 keV) and subsequent isochronical annealing temperature (500–1100 $^\circ$C are investigated. The results show that photocarrier radiometry signals are greatly enhanced for implanted samples annealed at high temperature, especially for those with a high implantation dose. The reduced surface recombination rate resulting from a high built-in electric field generated by annealing-activated impurities in the pn junction is believed to be responsible for the photocarrier radiometry signal enhancement. Photocarrier radiometry is contactless and can therefore be used as an effective in-line tool for the thermal annealing process monitoring of the ion-implanted wafers in semiconductor industries.
Keywords:  photocarrier radiometry      ion implantation      thermal annealing      silicon  
Received:  22 January 2010      Revised:  23 February 2010      Accepted manuscript online: 
PACS:  7220J  
  7855C  
  7320H  
  7340L  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60676058).

Cite this article: 

Liu Xian-Ming(刘显明), Li Bin-Cheng(李斌成), and Huang Qiu-Ping(黄秋萍) Thermal annealing induced photocarrier radiometry enhancement for ion implanted silicon wafers 2010 Chin. Phys. B 19 097201

[1] O'Mara W C, Herring R B and Hunt L P 1990 Handbook of Semiconductor Silicon Technology (Park Ridge: Noyes Publications)
[2] Quirk M and Serda J 2001 Semiconductor Manufacturing Technology (Beijing: Pearson Education)
[3] Mandelis A, Batista J and Shaughnessy D 2003 Phys. Rev. B 67 205208
[4] Shaughnessy D, Li B, Mandelis A and Batista J 2004 Appl. Phys. Lett. 84 5219
[5] Batista J, Mandelis A and Shaughnessy D 2003 Appl. Phys. Lett. 82 4077
[6] Li B, Shaughnessy D, Mandelis A, Batista J and Garcia J 2004 J. Appl. Phys. 95 7832
[7] Shaughnessy D and Mandelis A 2006 J. Electrochem. Soc. 153 G283
[8] Liu X, Li B and Zhang X 2008 J. Appl. Phys. 103 123706
[9] Lioudakis E, Christofides C and Othonos A 2006 J. Appl. Phys. 99 123514
[10] Nastasi M and Mayer J W 2006 Ion Implantation and Synthesis of Materials (Berlin: Springer-Verlag)
[11] Ng W L, Lourencco M A, Gwilliam R M, Ledain S, Shao G and Homewood K P 2001 Nature 410 192
[12] Stowe D J, Galloway S A, Senkader S, Mallik K, Falster R J and Wilshaw P R 2003 Physica B 340--342 710
[13] Stowe D, Fraser K, Galloway S, Senkader S, Falster R and Wilshaw P 2006 Microscopy of Semiconducting Materials: Proceedings of the 14th Conference Oxford, UK, 11--14 April, 2005 p355
[14] Lourencco M A, Milosavljevi'c M, Shao G, Gwilliam R M and Homewood K P 2006 Thin Solid Films 504 36
[15] Yuan Z, Li D, Gong D, Wang M, Fan R and Yang D 2007 Mat. Sci. Semicon. Proc. 10 173
[16] Yuan Z, Li D, Wang M, Gong D, Fan R and Yang D 2008 Vacuum 82 1337
[17] Sobolev N, Emel'yanov A, Sakharov V, Serenkov I, Shek E and Tetel'baum D 2007 Semiconductors 41 537
[18] Huang W Q, Xu L, Wang H X, Jin F, Wu K Y, Liu S R, Qin C J and Qin S J 2008 Chin. Phys. B 17 1817
[19] Pelaz L, Marqu'es L and Barbolla J 2004 J. Appl. Phys. 96 5947
[20] Liu X M, Li B C, Gao W D and Han Y L 2010 Acta. Phys. Sin. 59 1632 (in Chinese)
[21] Campbell S A 2001 The Science and Engineering of Microelectronic Fabrication, 2nd edition (Beijing: Publishing House of Electronics Industry) p137
[22] Ziegler J F, Biersack J P and Littmark U 1985 The Stopping Range of Ions in Solids (Tarrytown, NY: Pergamon); Ziegler J F http://www.srim.org [2006-]
[23] Palik E D 1998 Handbook of Optical Constants of Solids (San Diego: Academic)
[24] Colinge C A and Colinge J-P 2002 Physics of Semiconductor Devices (New York: Kluwer Academic Publishers)
[25] Mishra U K and Singh J 2008 Semiconductor Device Physics and Design (Netherlands: Springer)
[26] Rein S 2005 Lifetime Spectroscopy (Berlin: Springer-Verlag)
[27] Yacobi B G 2003 Semiconductor Materials (New York: Kluwer Academic Publishers)
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[6] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[7] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[8] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[9] Comparative study of high temperature anti-oxidation property of sputtering deposited stoichiometric and Si-rich SiC films
Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Jiao Zhang(张娇), and Jun Xu(徐军). Chin. Phys. B, 2022, 31(4): 048103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[12] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
No Suggested Reading articles found!