Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 088102    DOI: 10.1088/1674-1056/19/8/088102
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Impact of symmetrized and Burt–Foreman Hamiltonians on spurious solutions and energy levels of InAs/GaAs quantum dots

Gu Yong-Xian(谷永先), Yang Tao(杨涛)†ger, Ji Hai-Ming(季海铭), Xu Peng-Fei(徐鹏飞), and Wang Zhan-Guo(王占国)
Key Laboratory of Semiconductor Materials, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
Abstract  We present a systematic investigation of calculating quantum dots (QDs) energy levels using the finite element method in the frame of the eight-band k·p method. Numerical results including piezoelectricity, electron and hole levels, as well as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt–Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.
Keywords:  quantum dot      symmetrized Hamiltonian      Burt–Foreman Hamiltonian      finite element method      spurious solutions  
Received:  02 February 2010      Revised:  01 March 2010      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  71.20.Nr (Semiconductor compounds)  
  73.63.Kv (Quantum dots)  
  77.65.Ly (Strain-induced piezoelectric fields)  

Cite this article: 

Gu Yong-Xian(谷永先), Yang Tao(杨涛), Ji Hai-Ming(季海铭), Xu Peng-Fei(徐鹏飞), and Wang Zhan-Guo(王占国) Impact of symmetrized and Burt–Foreman Hamiltonians on spurious solutions and energy levels of InAs/GaAs quantum dots 2010 Chin. Phys. B 19 088102

[1] Bimberg D, Kirstaedter N, Ledentsov N, Alferov Z, Kop'ev P and Ustinov V 1997 IEEE J. Select. Topics Quantum Electron. 3 196
[3] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[3] Li H J, Sun J K and Xiao J L 2010 Chin. Phys. B 19 010314
[4] Kane E O Handbook on Semiconductors Vol. I ed. Paul W 1982 (Amsterdam: North Holland)
[5] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[6] Bir G L and Pikus G E 1974 Symmetry and Strain-induced Effects in Semiconductors (New York: Wiley)
[7] Stier O, Grundmann M and Bimberg D 1999 Phys. Rev. B 59 5688
[8] Chuang S L 1991 Phys. Rev. B 43 9649
[9] Baraff G A and Gershoni D 1991 Phys. Rev. B 43 4011
[10] Burt M G 1992 J. Phys.: Condens. Matter 4 6651
[11] Foreman B A 1997 Phys. Rev. B 56 R12748
[12] Stier O 2000 Electronic and Optical Properties of Quantum Dots and Wires (Berlin: Wissenschaft and Technik Verlag)
[13] Schliwa A 2007 Electronic Properties of Self-organized Quantum Dots Ph.D. Thesis (Berlin: The Technical University of Berlin)
[14] White S R and Sham L J 1981 Phys. Rev. Lett. 47 879
[15] Cartoixa X, Ting D Z Y and McGill T C 2003 J. Appl. Phys. 93 3974
[16] Yang W and Chang K 2005 Phys. Rev. B 72 233309
[17] Foreman B A 2007 Phys. Rev. B 75 235331
[18] Veprek R G, Steiger S and Witzigmann B 2007 Phys. Rev. B 76 165320
[19] Lassen B, Melnik R V N and Willatzen M 2009 Commun. Comput. Phys. 6 699
[20] Lassen B, Voon L C L Y, Willatzen M and Melnik R 2004 Solid State Commun. 132 141
[21] Schliwa A, Winkelnkemper M and Bimberg D 2007 Phys. Rev. B 76 205324
[22] Lassen B, Willatzen M, Barettin D, Melnik R V N and Voon L C L Y 2008 J. Phys.: Conference Series 107 012008
[23] Bahder T B 1990 Phys. Rev. B 41 11992
[24] Boujdaria K, Ridene S and Fishman G 2001 Phys. Rev. B 63 235302
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
No Suggested Reading articles found!