Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 087802    DOI: 10.1088/1674-1056/19/8/087802

Scattering correction method for panel detector based cone beam computed tomography system

Jia Peng-Xiang(贾鹏翔)a), Zhang Feng(张峰)b), Yan Bin(闫镔)b), and Bao Shang-Lian (包尚联)a)
a Beijing City Key Lab of Medical Physics and Engineering, Peking University, Beijing 100871, China; b China National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450002, China
Abstract  A scattering correction method for a panel detector based cone beam computed tomography system is presented. First, the x-ray spectrum of the system is acquired by using the Monte Carlo simulation method. Secondly, scattered photon distribution is calculated and stored as correction matrixes by using the Monte Carlo simulation method according to scanned objects and computed tomography system specialties. Thirdly, scattered photons are removed from projection data by correction matrixes. A comparison of reconstruction image between before and after scattering correction demonstrates that the scattering correction method is effective for the panel detector based cone beam computed tomography system.
Keywords:  scattering correction      Monte Carlo simulation      panel detector      cone beam computed tomography system  
Received:  28 February 2010      Revised:  21 April 2010      Accepted manuscript online: 
PACS: (Computed radiography)  
  02.50.Ng (Distribution theory and Monte Carlo studies)  
  87.57.C- (Image quality)  
  87.57.N- (Image analysis)  
  87.63.-d (Non-ionizing radiation equipment and techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60672104 and 10527003), the National Basic Research Program of China (Grant No. 2006CB705705) and the Joint Research Foundation of Beijing Education Committee, China (Grant No. JD100010607).

Cite this article: 

Jia Peng-Xiang(贾鹏翔), Zhang Feng(张峰), Yan Bin(闫镔), and Bao Shang-Lian (包尚联) Scattering correction method for panel detector based cone beam computed tomography system 2010 Chin. Phys. B 19 087802

[1] Rinkel J, Gerfault L, Esteve F and Dinten J M 2007 Phys. Med. Biol. 52 4633
[2] Siewerdsen J and Jeffray D 2001 Med. Phys. 28 220
[3] Zhu L, Bennett N R and Fahrig R 2006 IEEE Transactions on Medical Imaging 25 1573
[4] Ning R and Tang X 2004 Med. Phys. 31 1195
[5] Neitzel U 1992 Med. Phys. 19 475
[6] Lo J Y, Floyd C E, Baker J A and Ravin C E 1994 Med. Phys. 21 435
[7] Naimuddin S, Hasegawa B and Mistretta C A 1987 Med. Phys. 14 330
[8] Seibert J A and Boone J M 1988 Med. Phys. 15 567
[9] Wiegert J, Bertram M, Rose G and Aach T 2005 Proc. SPIE 5745 271
[10] Jarry G, Graham S A and Moseley D J 2006 Med. Phys. 33 4320
[11] Kriakou Y, Deak P, Riedel T, Smekall L V and Kalender W A 2005 Eur. Radiol. 15 306
[12] Watanabe M, Yamada R, Watanabe M, Gao F and Liu H F 2009 Chin. Phys. B 18 3066
[13] Siewerdsen J H, Daly M J, Bakhtiar B, Richard S, Keller H and Jaffray D A 2006 Med. Phys. 33 187
[14] Salvat F, Fernandez-Varea J M and Sempau J 2006 wxPENELOPE-2006: a code system for Monte Carlo simulation of electron and photon transport (Spain: Workshop Proceedings) p. 2
[15] Xu H B, Peng X K and Chen C B 2010 Chin. Phys. B 19 062901
[16] Zhang T, Liu Y B, Yang B, Wu H X and Gu J H 2009 Chin. Phys. B 18 2217
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[4] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[5] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[6] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[10] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[11] Phase transition of DNA compaction in confined space: Effects of macromolecular crowding are dominant
Erkun Chen(陈尔坤), Yangtao Fan(范洋涛), Guangju Zhao(赵光菊), Zongliang Mao(毛宗良), Haiping Zhou(周海平), Yanhui Liu(刘艳辉). Chin. Phys. B, 2020, 29(1): 018701.
[12] Variational and diffusion Monte Carlo simulations of a hydrogen molecular ion in a spherical box
Xuehui Xiao(肖学会), Kuo Bao(包括), Youchun Wang(王友春), Hui Xie(谢慧), Defang Duan(段德芳), Fubo Tian(田夫波), Tian Cui(崔田). Chin. Phys. B, 2019, 28(5): 056401.
[13] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[14] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!