Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 087205    DOI: 10.1088/1674-1056/19/8/087205
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Study of depth-dependent tetragonal distortion of quaternary AlInGaN epilayer by Rutherford backscattering/channeling

G. Husnain, Chen Tian-Xiang(陈田祥), Fa Tao(法涛), and Yao Shu-De(姚淑德)
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Abstract  A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μ m thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering and channeling are used to characterize the microstructure of AlInGaN. The results show a good crystalline quality of AlInGaN ($\chi$min=1.5%) with GaN buffer layer. The channeling angular scan around an off-normal <1$\bar{2}$13> axis in the {10$\bar{1}$0} plane of the AlInGaN layer is used to determine tetragonal distortion eT, which is caused by the elastic strain in the AlInGaN. The resulting AlInGaN is subjected to an elastic strain at interfacial layer, and the strain decreases gradually towards the near-surface layer. It is expected that an epitaxial AlInGaN thin film with a thickness of 850 nm will be fully relaxed (eT = 0).
Keywords:  III–V semiconductors      Rutherford backscattering and channeling      tetragonal distortion  
Received:  07 August 2009      Revised:  13 October 2009      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  61.85.+p (Channeling phenomena (blocking, energy loss, etc.) ?)  
  62.20.D- (Elasticity)  
  68.60.Bs (Mechanical and acoustical properties)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875004), and the National Basic Research Program of China (Grant No. 2010CB832904).

Cite this article: 

G. Husnain, Chen Tian-Xiang(陈田祥), Fa Tao(法涛), and Yao Shu-De(姚淑德) Study of depth-dependent tetragonal distortion of quaternary AlInGaN epilayer by Rutherford backscattering/channeling 2010 Chin. Phys. B 19 087205

[1] Zhang J M, Zou D S, Xu C, Zhu Y X, Liang T, Da X L and Shen G D 2007 Chin. Phys. 16 1135
[2] Liu N X, Wang H B, Liu J, Niu N H, Han J and Shen G D 2006 Acta Phys. Sin. 55 1424 (in Chinese)
[3] Asif Khan M, Yang J W, Simin G, Gaska R, Shur M S, Zur Loye H C, Tamulaitis G and Zukauskas A 2000 Appl. Phys. Lett. 76 1161
[4] Zhang J P, Yang J, Simin G, Shatalov M, Asif Khan M, Shur M S and Gaska R 2000 Appl. Phys. Lett. 77 2668
[5] Chitnis A, Kumar A, Shatalov M, Adivarahan V, Lunev A, Yang J W, Simin G, Asif Khan M, Gaska R and Shur M 2000 Appl. Phys. Lett. 77 3800
[6] Shatalov M, Chitnis A, Adivarahan V, Lunev A, Zhang J, Yang J W, Fareed Q, Simin G, Zakheim A, Asif Khan M, Gaska R and Shur M S 2000 Appl. Phys. Lett. 78 817
[7] Hirayama H, Kinoshita A, Yamabi T, Enomoto Y, Hirata A, Araki T, Nanishi Y and Aoyagi Y 2002 Appl. Phys. Lett. 80 207
[8] Chen C H, Huang L Y, Chen Y F, Jiang H X and Lin J Y 2002 Appl. Phys. Lett. 80 1397
[9] Yang L, Takashi E, Hiroyasu I and Takashi J 2003 J. Cryst. Growth 259 245
[10] Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388
[11] Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang Q M 2008 Appl. Surf. Sci. 255 3350
[12] Shang J Z, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabe K and Ohkawa K 2009 J. Cryst. Growth 311 474
[13] Chu W K, Mayer J W and Nicolet M A 1978 Backscattering Spectrometry (New York: Academic)
[14] Feng Z X, Yao S D, Hou L N and Jin R Q 2005 Nucl. Instrum. Methods Phys. Res. B 229 246
[15] Alves E, Pereira S, Correia M R, Pereira E, Sequeira A D and Franco N 2002 Nucl. Instrum. Methods Phys. Res. B 190 560
[16] Wu M F, Vantomme A, Hogg S M, Pattyn H, Langouche G, Stricht W V, Jacobs K and Moerman I 1999 Appl. Phys. Lett. 74 365
[17] Wu M F, Yao S D, Vantomme A, Hogg S M, Langouche G, Li J and Zhang G Y 1999 J. Vac. Sci. Technol. B 17 1502
[18] Lorenz K, Franco N, Alves E, Watson I M, Martin R W and O'Donnell K P 2006 Phys. Rev. Lett. 97 085501
[19] Lu Y, Cong G W, Liu X L, Lu D C, Wang Z G and Wu M F 2004 Appl. Phys. Lett. 85 5562
[20] Doolittle L R 1985 Nucl. Instrum. Methods Phys. Res. B 9 344
[21] Wu M F, Chen C C, Zhu D Z, Zhou S Q, Vantomme A, Langouche G, Zhang B S and Yang H 2002 Appl. Phys. Lett. 80 4130
[22] Ding Z B, Wang K, Zhou S Q, Chen T X and Yao S D 2007 Chin. Phys. Lett. 24 831
[23] Ding Z B, Wu W, Wang K, Fa T and Yao S D 2009 Chin. Phys. Lett. 26 086111
[24] Wu M F, Vantomme A, De Wachter J, Degroote S, Pattyn H, Langouche G and Bender H 1996 J. Appl. Phys. 79 6920
[25] Wu M F, Yao S D, Vantomme A, Hogg S, Langouche G, Stricht W V, Jacobs K, Moerman I, Li J and Zhang G Y 2000 Mater. Sci. Eng. B 75 232
[26] Pan C K, Zheng D C, Finstad T G, Chu W K, Speriosu V S, Nicolet M A and Barrett J H 1985 Phys. Rev. B 31 1270
[1] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[2] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[3] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[4] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[7] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[8] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[9] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[10] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[11] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[12] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[13] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[14] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[15] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
No Suggested Reading articles found!