CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Study of depth-dependent tetragonal distortion of quaternary AlInGaN epilayer by Rutherford backscattering/channeling |
G. Husnain†, Chen Tian-Xiang(陈田祥), Fa Tao(法涛), and Yao Shu-De(姚淑德)‡ |
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract A 240-nm thick Al0.4In0.02Ga0.58N layer is grown by metal organic chemical vapour deposition, with an over 1-μ m thick GaN layer used as a buffer layer on a substrate of sapphire (0001). Rutherford backscattering and channeling are used to characterize the microstructure of AlInGaN. The results show a good crystalline quality of AlInGaN ($\chi$min=1.5%) with GaN buffer layer. The channeling angular scan around an off-normal <1$\bar{2}$13> axis in the {10$\bar{1}$0} plane of the AlInGaN layer is used to determine tetragonal distortion eT, which is caused by the elastic strain in the AlInGaN. The resulting AlInGaN is subjected to an elastic strain at interfacial layer, and the strain decreases gradually towards the near-surface layer. It is expected that an epitaxial AlInGaN thin film with a thickness of 850 nm will be fully relaxed (eT = 0).
|
Received: 07 August 2009
Revised: 13 October 2009
Accepted manuscript online:
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
61.85.+p
|
(Channeling phenomena (blocking, energy loss, etc.) ?)
|
|
62.20.D-
|
(Elasticity)
|
|
68.60.Bs
|
(Mechanical and acoustical properties)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875004), and the National Basic Research Program of China (Grant No. 2010CB832904). |
Cite this article:
G. Husnain, Chen Tian-Xiang(陈田祥), Fa Tao(法涛), and Yao Shu-De(姚淑德) Study of depth-dependent tetragonal distortion of quaternary AlInGaN epilayer by Rutherford backscattering/channeling 2010 Chin. Phys. B 19 087205
|
[1] |
Zhang J M, Zou D S, Xu C, Zhu Y X, Liang T, Da X L and Shen G D 2007 Chin. Phys. 16 1135
|
[2] |
Liu N X, Wang H B, Liu J, Niu N H, Han J and Shen G D 2006 Acta Phys. Sin. 55 1424 (in Chinese)
|
[3] |
Asif Khan M, Yang J W, Simin G, Gaska R, Shur M S, Zur Loye H C, Tamulaitis G and Zukauskas A 2000 Appl. Phys. Lett. 76 1161
|
[4] |
Zhang J P, Yang J, Simin G, Shatalov M, Asif Khan M, Shur M S and Gaska R 2000 Appl. Phys. Lett. 77 2668
|
[5] |
Chitnis A, Kumar A, Shatalov M, Adivarahan V, Lunev A, Yang J W, Simin G, Asif Khan M, Gaska R and Shur M 2000 Appl. Phys. Lett. 77 3800
|
[6] |
Shatalov M, Chitnis A, Adivarahan V, Lunev A, Zhang J, Yang J W, Fareed Q, Simin G, Zakheim A, Asif Khan M, Gaska R and Shur M S 2000 Appl. Phys. Lett. 78 817
|
[7] |
Hirayama H, Kinoshita A, Yamabi T, Enomoto Y, Hirata A, Araki T, Nanishi Y and Aoyagi Y 2002 Appl. Phys. Lett. 80 207
|
[8] |
Chen C H, Huang L Y, Chen Y F, Jiang H X and Lin J Y 2002 Appl. Phys. Lett. 80 1397
|
[9] |
Yang L, Takashi E, Hiroyasu I and Takashi J 2003 J. Cryst. Growth 259 245
|
[10] |
Liu J P, Zhang B S, Wu M, Li D B, Zhang J C, Jin R Q, Zhu J J, Chen J, Wang J F, Wang Y T and Yang H 2004 J. Cryst. Growth 260 388
|
[11] |
Shang J Z, Zhang B P, Wu C M, Cai L E, Zhang J Y, Yu J Z and Wang Q M 2008 Appl. Surf. Sci. 255 3350
|
[12] |
Shang J Z, Zhang B P, Mao M H, Cai L E, Zhang J Y, Fang Z L, Liu B L, Yu J Z, Wang Q M, Kusakabe K and Ohkawa K 2009 J. Cryst. Growth 311 474
|
[13] |
Chu W K, Mayer J W and Nicolet M A 1978 Backscattering Spectrometry (New York: Academic)
|
[14] |
Feng Z X, Yao S D, Hou L N and Jin R Q 2005 Nucl. Instrum. Methods Phys. Res. B 229 246
|
[15] |
Alves E, Pereira S, Correia M R, Pereira E, Sequeira A D and Franco N 2002 Nucl. Instrum. Methods Phys. Res. B 190 560
|
[16] |
Wu M F, Vantomme A, Hogg S M, Pattyn H, Langouche G, Stricht W V, Jacobs K and Moerman I 1999 Appl. Phys. Lett. 74 365
|
[17] |
Wu M F, Yao S D, Vantomme A, Hogg S M, Langouche G, Li J and Zhang G Y 1999 J. Vac. Sci. Technol. B 17 1502
|
[18] |
Lorenz K, Franco N, Alves E, Watson I M, Martin R W and O'Donnell K P 2006 Phys. Rev. Lett. 97 085501
|
[19] |
Lu Y, Cong G W, Liu X L, Lu D C, Wang Z G and Wu M F 2004 Appl. Phys. Lett. 85 5562
|
[20] |
Doolittle L R 1985 Nucl. Instrum. Methods Phys. Res. B 9 344
|
[21] |
Wu M F, Chen C C, Zhu D Z, Zhou S Q, Vantomme A, Langouche G, Zhang B S and Yang H 2002 Appl. Phys. Lett. 80 4130
|
[22] |
Ding Z B, Wang K, Zhou S Q, Chen T X and Yao S D 2007 Chin. Phys. Lett. 24 831
|
[23] |
Ding Z B, Wu W, Wang K, Fa T and Yao S D 2009 Chin. Phys. Lett. 26 086111
|
[24] |
Wu M F, Vantomme A, De Wachter J, Degroote S, Pattyn H, Langouche G and Bender H 1996 J. Appl. Phys. 79 6920
|
[25] |
Wu M F, Yao S D, Vantomme A, Hogg S, Langouche G, Stricht W V, Jacobs K, Moerman I, Li J and Zhang G Y 2000 Mater. Sci. Eng. B 75 232
|
[26] |
Pan C K, Zheng D C, Finstad T G, Chu W K, Speriosu V S, Nicolet M A and Barrett J H 1985 Phys. Rev. B 31 1270
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|