CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Origin of the metallic to insulating transition of an epitaxial Bi(111) film grown on Si(111) |
Pang Fei(庞斐), Liang Xue-Jin(梁学锦)†, Liao Zhao-Liang(廖昭亮), Yin Shu-Li(尹树力), and Chen Dong-Min(陈东敏)‡ |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperatures below or above TC, respectively. The transition temperature TC decreases as the film thickness increases. By combining thickness dependence of the films resistivity, we find the insulating behaviour results from the states inside film, while the metallic behaviour originates from the interface states. We show that quantum size effect in a Bi film, such as the semimetal-to-semiconductor transition, is only observable at a temperature higher than TC.
|
Received: 16 May 2010
Revised: 26 May 2010
Accepted manuscript online:
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
68.35.B-
|
(Structure of clean surfaces (and surface reconstruction))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
73.50.Mx
|
(High-frequency effects; plasma effects)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874217 and 10427402) and the National Basic Research Program of China (973 Program) (Grant No. 2006CB933000). |
Cite this article:
Pang Fei(庞斐), Liang Xue-Jin(梁学锦), Liao Zhao-Liang(廖昭亮), Yin Shu-Li(尹树力), and Chen Dong-Min(陈东敏) Origin of the metallic to insulating transition of an epitaxial Bi(111) film grown on Si(111) 2010 Chin. Phys. B 19 087201
|
[1] |
Hofmann Ph 2006 Prog. Surf. Sci. 81 191
|
[2] |
Ogrin Yu F, Lutskii V N and Elinson M I 1966 JETP Lett. 3 71
|
[3] |
Sandomirskii V B 1967 Sov. Phys. JETP 25 101
|
[4] |
Hoffman C A, Meyer J R, Bartoli F J, Venere A Di, Yi X J, Hou C L, Wang H C, Ketterson J B and Wong G K 1993 Phys. Rev. B 48 11431
|
[5] |
Chu H T 1995 Phys. Rev. B 51 5532
|
[6] |
Hirahara T, Matsuda I, Yamazaki S, Miyata N, Nagao T and Hasegawa S 2007 Appl. Phys. Lett. 91 202106
|
[7] |
Hirahara Toru, Matsuda Iwao, Yamazaki Shiro and Hasegawa Shuji 2009 Hyomen Kagaku 30 374
|
[8] |
Wells J W, Handrup K, Kallehauge J F, Gammelgaard L, Balslev M B, Hansen J E, Petersen P R E , Boggild P and Hofmann Ph 2008 J. Appl. Phys. 104 053717
|
[9] |
Koroteev Yu M, Bihlmayer G, Gayone J E, Chulkov E V, Blügel S, Echenique P M and Hofmann Ph 2004 Phys. Rev. Lett. 93 046403
|
[10] |
Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Yu, Echenique P M, Saito M and Hasegawa S 2006 Phys. Rev. Lett. 97 146803
|
[11] |
Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Korotee Yu M and Hasegawa S 2007 Phys. Rev. B 75 035422
|
[12] |
Rashba E I 1960 Sov. Phys. Solid State 2 1109
|
[13] |
Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
|
[14] |
Hochstrasser M, Tobin J G, Rotenberg E and Kevan S D 2002 Phys. Rev. Lett. 89 216802
|
[15] |
Rotenberg E, Chung J W and Kevan S D 1999 Phys. Rev. Lett. 82 4066
|
[16] |
Reinert F, Nicolay G, Schmidt S, Ehm D and H"ufner S 2001 Phys. Rev. B 63 115415
|
[17] |
Hoesch M, Muntwiler M, Petrov V N, Hengsberger M, Patthey L, Shi M, Falub M, Greber T and Osterwalder J 2004 Phys. Rev. B 69 241401(R)
|
[18] |
Shikin A M, Varykhalov A, Prudnikova G V, Usachov D, Adamchuk V K, Yamada Y, Riley J D and Rader O 2008 Phys. Rev. Lett. 100 057601
|
[19] |
Cercellier H, Didiot C, Fagot-Revurat Y, Kierren B, Moreau L and Malterre D 2006 Phys. Rev. B 73 195413
|
[20] |
Varykhalov A, S'anchez-Barriga J, Shikin A M, Gudat W, Eberhardt W and Rader O 2008 Phys. Rev. Lett. 101 256601
|
[21] |
Behnia K, Balicas L and Kopelevich Y 2009 Science 317 1729
|
[22] |
Seradjeh B, Wu J S and Phillips P 2009 Phys. Rev. Lett. 103 136803
|
[23] |
Cai W W, Pang F, Wang J, Liu H, Liang X J, Xue Q K and Chen D M 2007 Rev. Sci. Instrum. 78 065108
|
[24] |
Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S and Sakurai T 2004 Phys. Rev. Lett. 93 105501
|
[25] |
Han T Z, Jia J F, Shen Q T, Dong G C and Xue Q K 2008 Surf. Sci. 602 102
|
[26] |
Waldfried C, McIlroy D N, Zhang J D, Dowben P A, Katrich G A and Plummer E W 1996 Surf. Sci. 363 296
|
[27] |
Lu M, Zieve R J, Hulst A van, Jaeger H M, Rosenbaum T F and Radelaar S 1996 Phys. Rev. B 53 1609
|
[28] |
Yang F Y, Liu K, Hong K M, Reich D H, Searson P C and Chien C L 1999 Science 284 1335
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|