Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 075206    DOI: 10.1088/1674-1056/19/7/075206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Advanced high-pressure plasma diagnostics with hairpin resonator probe surrounded by film and sheath

Xu Jin-Zhou (徐金洲)a, Shi Jian-Jun (石建军)a, Zhang Jing (张菁)a, Zhang Qi (张琪)b, Nakamura Keji (中村圭二)b, Sugai Hideo (菅井秀郎)b
a Department of Applied Physics, College of Science, Donghua University, Shanghai 201620, China; b Department of Electrical Engineering, School of Engineering, Chubu University 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
Abstract  The hairpin probe using microwave resonance in plasma is applicable to high pressure 1.33×103—1.01×105 Pa)) as developed recently. In this work, an analytic model of the hairpin resonator probe surrounded by a thin dielectric layer and a sheath layer is proposed. The correction factor due to these surroundings is analytically found and confirmed by electromagnetic field finite difference time domain simulation, thus enabling the accurate measurement of electron density in a high-pressure non-equilibrium uniform discharge.
Keywords:  hairpin resonator probe      simulation      high-pressure plasma      transmission line model  
Received:  19 August 2009      Accepted manuscript online: 
PACS:  52.70.Gw (Radio-frequency and microwave measurements)  
  52.70.Ds (Electric and magnetic measurements)  
  52.40.Kh (Plasma sheaths)  
  52.25.Mq (Dielectric properties)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10835004 ), and the 2nd Knowledge Cluster Research Project of Japan: Tokai Region Nanotechnology Manufacturing Cluster (Innovation of Environment Friendly Highly Functional Materials and Devices).

Cite this article: 

Xu Jin-Zhou (徐金洲), Shi Jian-Jun (石建军), Zhang Jing (张菁), Zhang Qi (张琪), Nakamura Keji (中村圭二), Sugai Hideo (菅井秀郎) Advanced high-pressure plasma diagnostics with hairpin resonator probe surrounded by film and sheath 2010 Chin. Phys. B 19 075206

[1] Stenzel R L 1976 Rev. Sci. Instrum. bf47 603
[2] Piejak P B, Godyak V A, Garner P, Alexandrovich B M and Sternberg N 2004 J. Appl. Phys. 95 3785
[3] Karkari S K and Elilingbore A R 2006 Appl. Phys. Lett. bf88 101501
[4] Milosavljevic V, Karkari S K and Elilingbore A R 2007 Plasma Sources Sci. Technol. bf16 304
[5] Karkari S K, Doggett B, Gaman C, Donnelly T, O'Farrel D, Ellingboe A R and Lunney J G 2008 Plasma Sources Sci. Technol. bf17 032001
[6] Sands B L, Siefert N S and Ganguly B N 2007 Plasma Sources Sci. Technol. bf16 716
[7] Xu J Z, Nakamura K, Zhang Q and Sugai H 2009 Plasma Sources Sci. Technol. bf18 045009
[8] Chen Z Q, Liu M H, Lan C H, Chen W, Tang L, Luo Z Q, Yan B R, Lü J H and Hu X W 2009 Chin. Phys. B bf18 3484
[9] CST Microwave Studio 2008 WWW.CST.COM
[10] Inan U S and Inan A S 1999 Engineering Eletromagnetics (Canifornia: Addision Wesley Longman) p156
[11] Merbahi N, Sewraj N, Marchal F and Ledru G 2004 10th International Symposium on the Science & Technology of Light Source, Toulouse, 18--22 July, 2004 p276
[12] Ulaby F T 2007 Fundamentals of Applied Electromagnetics (translatd by Yin H J) (Beijing: Post & Telecom Press) p349 (in Chinese)
[13] Lieberman M A and Lichtenbeg A J 2005 it Principles of Plasma Discharges and Materials Processing 2nd edition (New Jersey: Wiley ) p81
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!