Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 074208    DOI: 10.1088/1674-1056/19/7/074208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Coherent control of negative refraction based on local-field enhancement and dynamically induced chirality

Ba Nuo (巴诺), Gao Jin-Wei (高金伟), Tian Xing-Xia (田杏霞), Wu Xi (吴熙), Wu Jin-Hui (吴金辉)
College of Physics, Jilin University, Changchun 130023, China
Abstract  This paper studies the electromagnetic response of a coherently driven dense atomic ensemble to a weak probe. It finds that negative refraction with little absorption may be achieved in the presence of local-field enhanced interaction and dynamically induced chirality. The complex refractive index governing the probe refraction and absorption depends critically on the atomic density, the steady population distribution, the coherence dephasings, and the frequency detunings, and is also sensitive to the phase of the driving field because the photonic transition paths form a close loop. Thus, it can periodically tune the refractive index at a fixed frequency from negative to positive values and vice versa just by modulating the driving phase. Moreover, the optimal negative refraction is found to be near the probe magnetic resonance, which then requires the electric fields of the probe and the drive being on two-photon resonance due to the dipole synchronisation.
Keywords:  negative refraction      dynamically induced chirality      local field enhancement      electromagnetically induced transparency  
Revised:  14 December 2009      Accepted manuscript online: 
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874057).

Cite this article: 

Ba Nuo (巴诺), Gao Jin-Wei (高金伟), Tian Xing-Xia (田杏霞), Wu Xi (吴熙), Wu Jin-Hui (吴金辉) Coherent control of negative refraction based on local-field enhancement and dynamically induced chirality 2010 Chin. Phys. B 19 074208

[1] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[2] Ramakrishna S A 2005 Rep. Prog. Phys. 68 449
[3] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[4] Veselago V G 1968 Sov. Phys. Usp. 10 509
[5] Pendry J B 2004 Science 306 1353
[6] Yannopapas V and Moroz A 2005 J. Phys.: Condens. Matter 17 3717
[7] Wheeler M S, Aitchison J S and Mojahedi M 2005 Phys. Rev. B 72 193103
[8] He S L, Ruan Z C, Chen L and Shen J Q 2004 Phys. Rev. B 70 115113
[9] Thommen Q and Mandel P 2006 Opt. Lett. 31 1803
[10] Shelby R A, Smith D R and Schultz S 2001 Science 297 77
[11] Werner D H, Kwon D and Khoo I 2007 Opt. Express 15 3342
[12] Wang X D, Kwon D H, Werner D H, Khoo L C, Kildisher A V and Shalaev V M 2007 Appl. Phys. Lett. 91 143122
[13] Shen J Q, Ruan Z C and He S L 2004 J. Zhejiang Univ. Sci. 5 1322
[14] Oktel M "O and M"ustecapli ouglu "O E 2004 Phys. Rev. A 70 053806
[15] Thommen Q and Mandel P 2006 Phys. Rev. Lett. 96 053601
[16] Zhang H J, Niu Y P and Gong S Q 2006 Phys. Lett. A 363 497
[17] Shen J Q 2007 Chin. Phys. 16 1976
[18] Zheng J, Liu Z D, Zeng F H and Fang H J 2008 Acta Phys. Sin. 57 4219 (in Chinese)
[19] Ba N, Gao J W, Fan W, Wang D W, Ma Q R, Wang R and Wu J H 2008 Opt. Commun. 281 5566
[20] Kastel J, Fleischhauer M, Yelin S F and Walsworth R L 2007 Phys. Rev. Lett. 99 073602
[21] Zhang H J, Niu Y P, Sun H, Luo J and Gong S Q 2008 J. Phys. B 41 125503
[22] Harris S E 1997 Phys. Today 50 36
[23] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[24] Yang L J, Zhang L S, Li X L, Li X W, Guo Q L, Han L and Fu G S 2006 Acta Phys. Sin. 55 5206 (in Chinese)
[25] Jia W Z and Wang S J 2009 Chin. Phys. B 18 2282
[26] Quang T, Woldeyohannes M, Sajeev J and Agarwal G S 1997 Phys. Rev. Lett. 79 5238
[27] Wu J H and Gao J Y 2002 Phys. Rev. A 65 063807
[28] Macovei M, Evers J and Keitel C H 2003 Phys. Rev. Lett. 91 233601
[29] Cui N, Fan X J, Li A Y, Liu C P, Gong S Q and Xu Z Z 2007 Chin. Phys. 16 718
[30] Yang Y L, Liu Z B, Wang L, Tong D M and Fan X J 2009 Chin. Phys. B 18 1054
[31] Gray H R, Whitley R M and Stroud Jr C R 1978 Opt. Lett. 3 218
[32] Arimondo E 1996 Coherent Population Trapping in Laser Spectroscopy In: Wolf E (editor) Progress in Optics XXXV (Amsterdam: Elsevier Science) p257
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[5] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[9] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[10] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[11] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[14] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[15] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
No Suggested Reading articles found!