Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117803    DOI: 10.1088/1674-1056/abff27
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Retrieval of the effective constitutive parameters from metamaterial absorbers

Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南)
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  The equivalent medium theory of metamaterials provides a way to obtain their effective constitutive parameters. However, because of its non-reciprocity, the complexity of the electromagnetic coupling, and a metallic bottom layer, it has been challenging to retrieve them from a metamaterial absorber. In this paper, we propose a method without any approximation to obtain them, in which the non-reciprocity and the strong electromagnetic coupling are included. Compared with the three methods such as symmetric metamaterial method, asymmetric metamaterial method and metasurface method, our method can reveal the metamaterial absorber's electrical and magnetic resonance and show its electromagnetic coupling coefficients. To deal with a metamaterial absorber with a metallic bottom layer, four corners of the metallic bottom layer in the unit cell are removed, making it possible to retrieve the electromagnetic parameters. Surprisingly, these results show that the metamaterial absorber with a metallic bottom layer in our example operates in a negative refraction state at the half absorption frequencies, which helps further understand the absorbing mechanism of these metamaterial absorbers.
Keywords:  effective constitutive parameters      metamaterial absorber      negative refraction  
Received:  15 February 2021      Revised:  15 April 2021      Accepted manuscript online:  08 May 2021
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11872013).
Corresponding Authors:  Xiaojing Qiao     E-mail:  qxjbit84@163.com

Cite this article: 

Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南) Retrieval of the effective constitutive parameters from metamaterial absorbers 2021 Chin. Phys. B 30 117803

[1] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[2] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181
[3] Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403
[4] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun. 2 517
[5] Hedayati M K, Zillohu A U, Strunskus T, Faupel F and Elbahri M 2014 Appl. Phys. Lett. 104 041103
[6] Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X and Liu Y L 2009 Opt. Express 17 20256
[7] Chen H T 2012 Opt. Express 20 7165
[8] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B 79 6
[9] Smith D R, Schultz S, Markos P and Soukoulis C M 2002 Phys. Rev. B 65 195104
[10] Szabo Z, Park G H, Hedge R and Li E P 2010 IEEE Trans. Microw. Theory Tech. 58 2646
[11] Luukkonen O, Maslovski S I and Tretyakov S A 2011 IEEE Antennas Wirel. Propag. Lett. 10 1295
[12] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[13] Holloway C L, Kuester E F and Dienstfrey A 2011 IEEE Antennas Wirel. Propag. Lett. 10 1507
[14] Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y and Ling W W 2009 J. Phys. D-Appl. Phys. 42 095408
[15] Ye D X, Wang Z, Wang Z Y, Xu K W, Zhang B, Huangfu J T, Li C Z and Ran L X 2012 IEEE Trans. Antennas Propag. 60 5164
[16] Zhang X Q, Xu N N, Qu K N, Tian Z, Singh R, Han J G, Agarwal G S and Zhang W L 2015 Sci. Rep. 5 10737
[17] Han G M 2018 Mater. Res. Express 5 045803
[18] Lee J, Yoon Y J and Lim S 2012 Etri J. 34 126
[19] Wen Y Z, Ma W, Bailey J, Matmon G, Aeppli G and Yu X M 2014 Appl. Phys. Lett. 105 141111
[20] Lee D, Sung H K and Lim S 2016 Appl. Phys. B-Lasers Opt. 122 8
[21] Tak J, Jin Y and Choi J 2016 Microw Opt. Techn. Lett. 58 2052
[22] Astorino M D, Frezza F and Tedeschi N 2017 J. Appl. Phys. 121 063103
[23] Singh D and Srivastava V M 2018 Wirel. Pers. Commun. 104 129
[24] He L H, Shan D Y, He J, Liu S, Ghen Z Q and Xu H 2019 Mod. Phys. Lett. B 33 1950057
[25] Zhang J M, He D L, Wang G W, Wang P, Qiao L, Wang T and Li F S 2019 Chin. Phys. B 28 058401
[26] Zhong M 2020 Opt. Mater. 100 109712
[27] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103
[28] Bhattacharyya S and Srivastava K V 2014 J. Appl. Phys. 115 064508
[29] Deng G S, Xia T Y, Yang J and Yin Z P 2018 IET Microw. Antennas Propag. 12 1120
[30] Agarwal M and Meshram M K 2018 AIP Adv. 8 095016
[31] Kalraiya S, Chaudhary R K, Abdalla M A and Gangwar R K 2019 Mater. Res. Express 6 045802
[32] Garg P and Jain P 2020 AEU-Int. J. Electron. Commun. 116 153063
[33] Jain P, Singh A K, Pandey J K, Garg S, Bansal S, Agarwal M, Kumar S, Sardana N and Gupta N 2020 IET Microw. Antennas Propag. 14 390
[34] Chen X, Grzegorczyk T M, Wu B I, Pacheco J and Kong J A 2004 Phys. Rev. E 70 016608
[35] Popa B I and Cummer S A 2012 Phys. Rev. B 85 205101
[36] Xu X H, Liu Y, Gan Y H and Liu W M 2015 Acta Phys. Sin. 64 044101 (in Chinese)
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[3] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[4] Propagation of shaped beam through uniaxially anisotropic chiral slab
Ming-Jun Wang(王明军), Jia-Lin Zhang(张佳琳), Hua-Yong Zhang(张华永), and Zi-Han Wang(王梓涵)$. Chin. Phys. B, 2020, 29(11): 114211.
[5] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[6] Wider frequency domain for negative refraction index in a quantized composite right-left handed transmission line
Qi-Xuan Wu(吴奇宣), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2018, 27(6): 068102.
[7] Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers
Lei Wang(王磊), Shijun Ge(葛士军), Zhaoxian Chen(陈召宪), Wei Hu(胡伟), Yanqing Lu(陆延青). Chin. Phys. B, 2016, 25(9): 094222.
[8] Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film
Dan-Dan Bu(布丹丹), Chun-Sheng Yue(岳春生), Guang-Qiu Zhang(张广求), Yong-Tao Hu(胡永涛), Sheng Dong(董胜). Chin. Phys. B, 2016, 25(6): 067802.
[9] Design of a multiband terahertz perfect absorber
Dan Hu(胡丹), Hong-yan Wang(王红燕), Zhen-jie Tang(汤振杰),Xi-wei Zhang(张希威), Lin Ju(鞠琳), Hua-ying Wang(王华英). Chin. Phys. B, 2016, 25(3): 037801.
[10] Negative refractions by triangular lattice sonic crystals in partial band gaps
S. Alagoz, B. B. Alagoz, A. Sahin, S. Nur. Chin. Phys. B, 2015, 24(4): 046201.
[11] Wavefront modulation of water surface wave by a metasurface
Sun Hai-Tao (孙海涛), Cheng Ying (程营), Wang Jing-Shi (王敬时), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(10): 104302.
[12] Design of a varactor-tunable metamaterial absorber
Lin Bao-Qin (林宝勤), Da Xin-Yu (达新宇), Zhao Shang-Hong (赵尚弘), Meng Wen (蒙文), Li Fan (李凡), Fang Ying-Wu (方英武), Wang Jia-Fu (王甲富). Chin. Phys. B, 2014, 23(6): 067801.
[13] Dual-band and polarization-insensitive terahertz absorber based on fractal Koch curves
Ma Yan-Bing (马岩冰), Zhang Huai-Wu (张怀武), Li Yuan-Xun (李元勋), Wang Yi-Cheng (王艺程), Lai Wei-En (赖伟恩), Li Jie (李颉). Chin. Phys. B, 2014, 23(5): 058102.
[14] Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses
Wang Guo-Dong (王国栋), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), Kong Ling-Hua (孔令华), Cheng Li-Li (程莉莉), Chen Zhao-Quan (陈兆权). Chin. Phys. B, 2014, 23(1): 017802.
[15] Theoretical demonstration of hybrid focusing points ofsonic crystal flat lenses and possible applications
Serkan Alagoz, Baris Baykant Alagoz. Chin. Phys. B, 2013, 22(7): 076201.
No Suggested Reading articles found!