Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 058201    DOI: 10.1088/1674-1056/19/5/058201
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Rotation of hydrogen molecules during the dissociative adsorption on the Mg(0001) surface: a first-principles study

Li Yan-Fang(李艳芳)a)b), Yang Yu(杨宇)b), Sun Bo(孙博)b), Song Hong-Zhou(宋红州)b), Wei Ying-Hui(卫英慧) a), and Zhang Ping(张平)b)†ger
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Using first-principles calculations, we systematically study the potential energy surfaces and dissociation processes of the hydrogen molecule on the Mg(0001) surface. It is found that during the dissociative adsorption process with the minimum energy barrier, the hydrogen molecule firstly orients perpendicular, and then rotates to get parallel to the surface. It is also found that the orientation of the hydrogen molecule in the transition state is neither perpendicular nor parallel to the surface. Most importantly, we find that the rotation causes a reduction of the calculated dissociation energy barrier for the hydrogen molecule. The underlying electronic mechanism for the rotation of the hydrogen molecule is also discussed in the paper.
Keywords:  first-principles      hydrogen      dissociation      rotation  
Received:  16 July 2009      Revised:  29 November 2009      Accepted manuscript online: 
PACS:  68.43.Mn (Adsorption kinetics ?)  
  68.47.De (Metallic surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10904004, 10604010, 60776063, 50471070 and 50644041).

Cite this article: 

Li Yan-Fang(李艳芳), Yang Yu(杨宇), Sun Bo(孙博), Song Hong-Zhou(宋红州), Wei Ying-Hui(卫英慧), and Zhang Ping(张平) Rotation of hydrogen molecules during the dissociative adsorption on the Mg(0001) surface: a first-principles study 2010 Chin. Phys. B 19 058201

[1] Darling G R and Holloway S 1995 Rep. Prog. Phys. 58 1595
[2] King D A and Woodruff D P 1988 The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis (Amsterdam: Elsevier)
[3] Jacobson N, Tegner B, Schr\"{oder E, Hyldgaard P and Lundqvist B I 2002 Comput. Mat. Sci. 24 273
[4] Wu G X, Zhang J Y, Wu Y Q, Li Q, Zhou G Z and Bao X H 2008 Acta Phys. Chim. Sin. 24 55
[5] Lu G and Kaxiras E 2005 Phys. Rev. Lett. 94 155501
[6] Gustafsson K and Andersson S 2006 Phys. Rev. Lett. 97 076101
[7] Sprunger P T and Plummer E W 1991 Chem. Phys. Lett. 187 559
[8] N{\orskov J K, Houm{\oller A, Johansson P K and Lundqvist B I 1981 Phys. Rev. Lett. 46 257
[9] Bird D M, Clarke L J, Payne M C and Stich I 1993 Chem. Phys. Lett. 212 518
[10] Vegge T 2004 Phys. Rev. B 70 035412
[11] Johansson M, Ostenfeld C W and Chorkendorff I 2006 Phys. Rev. B 74 193408
[12] Hou H, Gulding S J, Rettner C T, Wodtke A M and Auerbach D J 1997 Science 277 80
[13] \"{Osterlund L, Zori\'{c I and Kasemo B 1997 Phys. Rev. B 55 15452
[14] Busnengo H F, Salin A and Dong W 2000 J. Chem. Phys. 112 7641
[15] Rivi\`{ere P, Salin A and Mart\'{\hina F 2006 J. Chem. Phys. 124 084706
[16] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 and references therein
[17] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Amonenko V, Ivanov V Y, Tikhinskij G and Finkel V 1962 Phys. Met. Metallogr. 14 47
[21] Huber K P and Herzberg G 1979 Constants of Diatomic Molecules (New York: van Nostrand)
[22] Yang Y, Zhou G, Wu J, Duan W H, Xue Q K, Gu B L, Jiang P, Ma X C and Zhang S B 2008 J. Chem. Phys. 128 164705
[23] Du A J, Smith S C, Yao X D and Lu G Q 2005 J. Phys. Chem. B 109 18037
[24] Hammer B, Jacobsen K W and N{\orskov J K 1993 Surf. Sci. 297 L68
[25] Harris J and Anderson S 1985 Phys. Rev. Lett. 55 1583
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[11] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[12] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] Nuclear dissociation after the O 1s $\rightarrow (^4\Sigma_\text{u}^-)$3sσ excitation in O$_2$ molecules
Bocheng Ding(丁伯承), Ruichang Wu(吴睿昌), Yunfei Feng(封云飞), and Xiaojing Liu(刘小井). Chin. Phys. B, 2022, 31(8): 083301.
No Suggested Reading articles found!