Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054215    DOI: 10.1088/1674-1056/19/5/054215
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Relationship between group velocity and symmetry of photonic crystals

Ye Wei-Min(叶卫民), Luo Zhang(罗章), Yuan Xiao-Dong(袁晓东), and Zeng Chun(曾淳)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Group velocity (GV) of eigenmode is a crucial parameter to explain the extraordinary phenomena about light propagation in photonic crystals (PhCs). To study relationships between group velocity and symmetry of PhCs, a new general expression of GV in PhCs made up of non-dispersive material is introduced. Based on this, the GVs of eigenmodes of PhCs, especially those of degenerate eigenmodes at highly symmetric points in the first Brillouin zone, are discussed. Some interesting results are obtained. For example, the summation of degenerate eigenmodes' GVs is invariant under the operations of wave vector K-group MK. In addition, some numerical results are presented to verify them.
Keywords:  group velocity      symmetry      photonic crystals      degenerate eigenmode  
Received:  11 March 2009      Revised:  25 September 2009      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  02.10.Ud (Linear algebra)  

Cite this article: 

Ye Wei-Min(叶卫民), Luo Zhang(罗章), Yuan Xiao-Dong(袁晓东), and Zeng Chun(曾淳) Relationship between group velocity and symmetry of photonic crystals 2010 Chin. Phys. B 19 054215

[1] Naomi M 2000 Phys. Rev. B 62 10696
[2] Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2002 Phys. Rev. B 65 201104(R)
[3] Dong J W, Hu X H and Wang H Z 2007 Chin. Phys. 16 1057
[4] Chen X J, Hu W, Lan S and Wu L J 2009 Acta Phys. Sin. 58 1025 (in Chinese)
[5] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T and Kawakami S 1998 Phys. Rev. B 58 10096
[6] Matsumoto T, Eom K S and Baba T 2006 Opt. Lett. 31 2786
[7] Sakoda K 2001 Optical Properties of Photonic Crystals (Berlin: Springer)
[8] Yaroslav A, Urzhumo V and Shvets G 2005 Phys. Rev. E 72 026608
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[3] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[4] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[5] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[6] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[7] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[8] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[9] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[13] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[14] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!