Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054214    DOI: 10.1088/1674-1056/19/5/054214
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Ultraslow optical solitons via electromagnetically induced transparency: a density-matrix approach

Luo Bin(骆斌)a)b), Hang Chao(杭超)b), Li Hui-Jun(李慧军)c), and Huang Guo-Xiang(黄国翔)b)c)
a Department of Physics and Information Science, Yulin Teachers College, Yulin 537000, China; b Department of Physics, East China Normal University, Shanghai 200062, China; c Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We study the ultraslow optical solitons in a resonant three-level atomic system via electromagnetically induced transparency under a density-matrix (DM) approach. The results of linear and nonlinear optical properties are compared with those obtained by using an amplitude variable (AV) approach. It is found that the results for both approaches are the same in the linear regime if the corresponding relations between the population-coherence decay rates in the DM approach and the energy-level decay rates in the AV approach are appropriately imposed. However, in the nonlinear regime there is a small difference for the self-phase modulation coefficient of the nonlinear Schr?dinger equation that governs the time evolution of probe pulse envelope. All analytical predicts are checked by numerical simulations.
Keywords:  ultraslow optical solitons      electromagnetically induced transparency  
Received:  29 October 2008      Revised:  22 September 2009      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  02.10.Yn (Matrix theory)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos.~10674060, 10874043 and 10974181), by the National Basic Research Program of China (Grant Nos.~2005CB724508 and 2006CB921104).

Cite this article: 

Luo Bin(骆斌), Hang Chao(杭超), Li Hui-Jun(李慧军), and Huang Guo-Xiang(黄国翔) Ultraslow optical solitons via electromagnetically induced transparency: a density-matrix approach 2010 Chin. Phys. B 19 054214

[1] Dauxois T and Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)
[2] Huang G 2005 Nonlinear Amplitude Equations and Solitons in Bose-Einstein Condensates In: Nonlinear Waves in Fluids: Recent Advances and Modern Applications, CISM Courses and Lecture Notes No.~483 edited by Grimshaw R (Berlin: Springer) pp169--196
[3] Hasegawa A and Matsumoto M 2003 Optical Solitons in Fibers (Berlin: Springrer)
[4] Harris S E 1997 Phys. Today 50 36
[5] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 (and references therein)
[6] Hau L V, Harris S E, Dutton Z and Behrrozi C H 1999 Nature 397 594
[7] Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S and Scully M O 1999 Phys. Rev. Lett. 82 5229
[8] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[9] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[10] Huang G, Deng L and Payne M G 2005 Phys. Rev. E 72 016617
[11] Huang G, Jiang K, Payne M G and Deng L 2006 Phys. Rev. E 73 056606
[12] Deng L, Payne M G, Huang G and Hagley E W 2005 Phys. Rev. E 72 055601 (R)
[13] Hang C, Huang G and Deng L 2006 Phys. Rev. E 73 036607
[14] Hang C, Huang G and Deng L 2006 Phys. Rev. E 74 046601
[15] Wang J, Hang C and Huang G 2007 Phys. Lett. A 366 528
[16] Hang C and Huang G 2008 Phys. Rev. A 77 033830
[17] Ding J W, She Y C and Wang D L 2009 Acta Phys. Sin. 58 3198 (in Chinese)
[18] Zhuang F, Shen J Q and Ye J 2007 Acta Phys. Sin. 56 541 (in Chinese)
[19] Wang F Y, Shi B S, Lu X S and Guo G C 2008 Chin. Phys. B 17 1798
[20] Li J H, Yang W X and Peng J C 2004 Chin. Phys. 13 1694
[21] Boyd R W 2003 Nonlinear Optics (second edition) (San Diego: Academic Press)
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[8] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[12] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[13] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[14] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[15] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
No Suggested Reading articles found!