Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054301    DOI: 10.1088/1674-1056/19/5/054301
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Physical model of acoustic forward scattering by cylindrical shell and its experimental validation

Lei Bo(雷波), Yang Kun-De(杨坤德), and Ma Yuan-Liang(马远良)
College of Marine, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Research on the underwater target scattering can provide important theoretical support for target detection. The scattering model of cylindrical shell is established in this paper. It is found that the forward target strength is much stronger and varies with angles of incident wave less significantly than backward target strength. The received forward signal strength fluctuates with the target moving due to the interference between direct signal and scattering signal, which is most significant when target approaches the baseline. An experiment is carried out in an anechoic tank to validate the scattering model. The method of acquisiting forward scattering in the tank is proposed. The forward and the backward target strengths are achieved by using the pulse compression technology, and they are about 3dB less than the modeling results. The forward scattering phenomena of quiescent and moving target are measured, which are similar to modeling results with different target types.
Keywords:  scattering model      forward scattering      target strength      shell  
Received:  13 September 2009      Revised:  23 October 2009      Accepted manuscript online: 
PACS:  43.30.Ft (Volume scattering)  
  43.30.Es (Velocity, attenuation, refraction, and diffraction in water, Doppler effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10774119), the program for New Century Excellent Talents in University, China (Grant No.~NCET-08-0455), the Natural Science Foundation of Shaanxi province, China (Grant No. SJ08F07), the Foundation of National Laboratory of Acoustics, and the Northwestern Polytechnical University NPU Foundation for Fundamental Research, China (Grant No.~2007004).

Cite this article: 

Lei Bo(雷波), Yang Kun-De(杨坤德), and Ma Yuan-Liang(马远良) Physical model of acoustic forward scattering by cylindrical shell and its experimental validation 2010 Chin. Phys. B 19 054301

[1] Zhuo L K, Fan J and Tang W L 2007 Acta Acoustica 32 411 (in Chinese)
[2] Sun Y and Xu H T 2007 Acta Acoustica 32 369 (in Chinese)
[3] Ye Z 1997 J. Acoust. Soc. Am. 102 877
[4] Schmidt H 2004 Proceeding of High Frequency Ocean Acoustics Conference California, USA, March 1--5, 2004 p456
[5] Bowman J J, Senior T B A and Uslenghi P L E 1987 Electromagnetic and Acoustic Scattering by Simple Shapes (New York: Hemisphere Publishing Corp.) p362
[6] Ingentio F 1987 J. Acoust. Soc. Am. 82 2051
[7] Makris N C 1998 J. Acoust. Soc. Am. 104 2105
[8] Zverev V A, Korotin P I, Matveev A L , Mityugov V V, Orlov D A Salin B M and Turchin V I 2001 Acoustical Physics 47 184
[9] Matveev A L, Spindel R C and Rouseff D 2007 IEEE Journal of Oceanic Engineering 32 626
[10] Gillespie B, Rolt K and Edelson G 1997 Proceeding of the 23${ rd$ International Symposium on Acoustical Imaging B oston April 13--16, 1997 p501
[11] Hollett R D, Kessel R T and Pinto M 2006 Proceedings of UDT Europe 2006 Hamburg, Germany, June 27--29, 2006 ADA454750
[12] Bertrand A and Josse E 2000 ICES J. Mar. Sci. 57 1143
[13] Hui J, Wang Z J, Hui J Y and He W X 2009 Acta Phys. Sin. 58 5491 (in Chinese)
[14] Tang L G, Xu X M and Liu S X 2008 Acta Phys. Sin. 57 4251 (in Chinese)
[15] Ding L 1997 J. Acoust. Soc. Am. 101 3398
[16] Ding L, Takao Y, Sawada K, Okumura T, Miyanohana Y, Fursusawa M and Farmer D M 1998 J. Acoust. Soc. Am. 103 3241
[17] Fawcett J A 1996 J. Acoust. Soc. Am. 100 3053
[18] Zhu Y 1990 Principle of Active Sonar Information Detection (Beijing: Ocean Press) p73 (in Chinese)
[19] Wang D Z and Shang E C 1981 Underwater Acoustics( Beijing: Science Press) p351 (in Chinese)
[20] Urick R J 1983 Principles of Underwater Sound (3rd ed) (New York: McGraw-Hill) pp312--314
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[3] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[4] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[5] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[6] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[7] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[8] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[9] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[10] Evidence of potential change in nonsequential double ionization
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进). Chin. Phys. B, 2021, 30(2): 023401.
[11] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[12] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[13] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[14] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[15] Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model
Jia Xu(徐佳), Weizhen Xie(谢伟珍), Yiyong Chen(陈一勇), Lihong Wang(王立洪), and Qing Ma(马青). Chin. Phys. B, 2020, 29(12): 128703.
No Suggested Reading articles found!