Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054210    DOI: 10.1088/1674-1056/19/5/054210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Femtosecond laser-induced microstructure in Foturan glass

Sun Hai-Yi(孙海轶), Luo Fang-Fang(骆芳芳), He Fei(何飞), Liao Yang(廖洋), and Xu Jian(徐剑)
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  We report on the microstructure formation in Foturan glass, induced by 1 kHz, 120 femtosecond laser irradiation. It is found that the line-shaped filamentation, not void array tends to be formed in this glass. This is different from our previous experimental results in fused silica and BK7 glasses. A possible mechanism Ag$^+$ captures the free electrons generated by laser, is proposed to explain the observed phenomena.
Keywords:  femtosecond laser      line-shaped filamentation      Foturan glass      mechanism  
Received:  07 September 2009      Revised:  04 November 2009      Accepted manuscript online: 
PACS:  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  61.82.Ms (Insulators)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  61.43.Fs (Glasses)  
  42.70.Ce (Glasses, quartz)  
Fund: Project supported by National Basic Research Program of China (Grant No.~2006CB806000), Cheng Ya' 100 Talents Program of the Chinese Academy of Sciences, Shanghai Pujiang Program, and National Outstanding Youth Foundation.

Cite this article: 

Sun Hai-Yi(孙海轶), Luo Fang-Fang(骆芳芳), He Fei(何飞), Liao Yang(廖洋), and Xu Jian(徐剑) Femtosecond laser-induced microstructure in Foturan glass 2010 Chin. Phys. B 19 054210

[1] Cheng Y, Sugioka K, Masuda M, Toyoda K, Kawachi M, Shihoyama K and Midorikawa K 2003 Riken Review 50 101
[2] Kanehira S, Si J, Qiu J, Fujita K and Hirao K 2005 Nano Lett. 5 1591
[3] Chan J W, Huser T R, Risbud S H, Hayden J S and Krol D M 2003 Appl. Phys. Lett. 82 2371
[4] Dai Y and Qiu J R 2009 Chin. Phys. B 18 2858
[5] Li C B, Jia T Q, Sun H Y, Li X X, Xu S Z, Feng D H, Wang X F, Ge X C and Xu Z Z 2006 Acta Phys. Sin. 55 217 (in Chinese)
[6] Cheng G H, Wang Y S, Liu Q, Zhao W and Chen G F 2004 Acta Phys. Sin. 53 436 (in Chinese)
[7] Sun H B , Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H and Nishii J 2001 Opt. Lett. 26 325
[8] Toratani E and Kamata M 2005 Appl. Phys. Lett. 87 171103
[9] Sun H, Song J, Li C, Xu J, Wang X, Cheng Y, Xu Z, Qiu J and Jia T 2007 Appl. Phys. A 88 285
[10] Fisette B, Busque F, Degorce J Y and Meunier M 2006 Appl. Phys. Lett. 88 091104
[11] Kanehira S, Miura K and Hirao K 2008 Appl. Phys. Lett. 93 023112
[12] Liu Y, Zhu B, Wang L, Qiu J, Dai Y and Ma H 2008 Appl. Phys. Lett. 92 121113
[13] Liu Y, Shimizu M, Zhu B, Dai Y, Qian B, Qiu J, Shimotsuma Y, Miura K and Hirao K 2009 Opt. Lett. 34 136
[14] Schaffer C B, Brodeur A and Mazur E 2001 Meas. Sci. Technol. 12 1784
[15] Wei C, He H, Deng Z, Shao J and Fan Z 2005 Opt. Eng. 44 044202
[16] Guignard F, Autric M and Baudinaud V 1998 Proceeding SPIE 3244 176
[17] Cho Y R, Oh J Y, Kim H S and Jeong H S 1999 Mater Sci. Eng. B 64 79
[18] http://www.dusemund.com/mikroglas/Special{\%20Glasses.pdf.
[19] Brown J T 2004 Appl. Opt. 43 4506
[20] Dietrich T R, Abraham M, Diebel J, Lacher M and Ruf A J 1993 J. Micromech. Microeng. 3 187
[21] Eaton S M, Zhang H, Herman P R, Yoshino F, Shah L, Bovatsek J and Arai A Y 2005 Opt. Express 13 4708
[22] Wang C and Mandelis A 1995 J. Appl. Phys. 85 8366
[23] Wu Z, Jiang H, Luo L, Guo H, Yang H and Gong Q 2002 Opt. Lett. 27 448
[24] Ranka J K, Schirmer R W and Gaeta A L 1996 Phys. Rev. Lett. 77 3783
[25] Gopal R, Deepak V and Sivaramakrishnan S 2007 PRAMANA-Journal of Physics, Indian Academy of Sciences 68 547
[26] Qu S, Qiu J, Zhao C, Jiang X, Zeng H and Zhu C 2004 Appl. Phys. Lett. 84 2046
[1] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[4] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[5] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[9] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[10] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[11] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[12] A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
Zhen-Nan Chen(陈镇男), Meng-Bo Qian(钱孟波), Fu-Xing Sun(孙福兴), and Jia-Xuan Pan(潘佳煊). Chin. Phys. B, 2022, 31(4): 044501.
[13] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[14] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!