Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054211    DOI: 10.1088/1674-1056/19/5/054211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The propagation of dipole solitonsin highly nonlocal medium

Zhao Jia-Yin(赵嘉胤), Wang Qi(王奇), Shen Ming(申明), Shi Jie-Long(施解龙), Kong Qian(孔茜), and Ge Li-Juan(葛丽娟)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  This paper studies the propagation of dipole solitons in highly nonlocal medium by using the variational method. It finds that the dipole solitons will be stable when the input power obeys a restrict value. When the incident power does not satisfy the stable conditions, the nonlocal accessible dipole solitons will undergo linear harmonic oscillation. It shows such evolution behaviours in detail.
Keywords:  nonlinear      highly nonlocal media      dipole solitons  
Received:  01 June 2009      Revised:  12 August 2009      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  02.30.Xx (Calculus of variations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~60677030 and 60808002), the Shanghai Committee of Science and Technology, China (Grant No.~08JC14097), and the Shanghai Leading Academic Discipline Program (Grant No.~S30105).

Cite this article: 

Zhao Jia-Yin(赵嘉胤), Wang Qi(王奇), Shen Ming(申明), Shi Jie-Long(施解龙), Kong Qian(孔茜), and Ge Li-Juan(葛丽娟) The propagation of dipole solitonsin highly nonlocal medium 2010 Chin. Phys. B 19 054211

[1] Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J and Edmundson D 2004 J. Opt. B : Quantum Semiclassical Opt. 6 S288
[2] Krolikowski W, Bang O, Rasmussen J J and Wyller J 2001 Phys. Rev. E 64 016612
[3] Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
[4] Rasmussen P D, Bang O and Krolikowski W 2005 Phys. Rev. E 72 066611
[5] Krolikowski W, Bang O and Wyller J 2004 Phys. Rev. E 70 036617
[6] Lopez-Aguayo S, Desyatnikov A S, Kivshar Y S, Skupin S, Krolikowski W and Bang O 2006 Opt. Lett. 31 1100
[7] Dreischuh A, Neshev D N, Petersen D E, Bang O and Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[8] Kartashov Y V, Torner L, Vysloukh V A and Mihalache D 2006 Opt. Lett. 31 1483
[9] Alberucci A, Peccianti M, Assanto G, Dyadyusha A and Kaczmarek M 2006 Phys. Rev. Lett. 97 153903
[10] Peccianti M, Dyadyusha A, Kaczmarek M and Assanto G 2006 Nature Physics 2 737
[11] Rotschild C, Alfassi B, Cohen O and Segev M 2006 Nature Physics 2 769
[12] Zhang Y Q, Lu K Q, Zhang M Z, Li K H, Liu S and Zhang Y P 2009 Chin. Phys. B 18 2359
[13] Snyder A W and Mitchell D J 1997 Science 276 1538
[14] Rotschild C, Segev M, Xu Z, Kartashov Y V, Torner L and Cohen O 2006 Opt. Lett. 31 3312
[15] Rotschild C, Cohen O, Manela O, Segev M and Carmon T 2005 Phys. Rev. Lett. 95 213904
[16] Wang Y Q and Guo Q 2008 Chin. Phys. B 17 2527
[17] Conti C, Peccianti M and Assanto G 2003 Phys. Rev. Lett. 91 073901
[18] Shen M, Wang Q, Shi J, Hou P and Kong Q 2006 Phys. Rev. E 73 056602
[19] Shen M, Shi J and Wang Q 2006 Phys. Rev. E 74 027601
[20] Yakimenko A I, Lashkin V M and Prikhodko O O 2006 Phys. Rev. E 73 066605
[21] Reimbert C G, Minzoni A A, Marchant T R, Smyth N F and Worthy A L 2008 Physica D 237 1088
[22] Ye F, Kartashov Y V and Torner L 2008 Phys. Rev. A 77 043821
[23] Briedis D, Petersen D E, Edmundson D, Krolikowski W and Bang O 2005 Opt. Express 13 435
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[6] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[14] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[15] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
No Suggested Reading articles found!