Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 043302    DOI: 10.1088/1674-1056/19/4/043302
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Far-infrared conductivity of CuS nanoparticles measured by terahertz time-domain spectroscopy

Yang Yu-Ping(杨玉平)a), Zhang Zhen-Wei(张振伟)b), Shi Yu-Lei(施宇蕾)b), Feng Shuai(冯帅)a), and Wang Wen-Zhong(王文忠)a)
a School of Science, Minzu University of China, Beijing 100081, China; b Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  This paper reports that terahertz time-domain spectroscopy is used to measure the optical properties of CuS nanoparticles in composite samples. The complex conductivity of pure CuS nanoparticles is extracted by applying the Bruggeman effective medium theory. The experimental data are consistent with the Drude--Smith model of conductivity in the range of 0.2--1.5 THz. The results demonstrate that carriers become localized with a backscattering behaviour in small-size nanostructures. In addition, the time constant for the carrier scattering is obtained and is only 64.3 fs due to increased electron interaction with interfaces and grain boundaries.
Keywords:  terahertz time-domain spectroscopy      conductivity      effective medium theory      Drude--Smith model  
Received:  28 July 2009      Revised:  14 August 2009      Accepted manuscript online: 
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.63.Bd (Nanocrystalline materials)  
  78.70.Gq (Microwave and radio-frequency interactions)  
  61.72.Mm (Grain and twin boundaries)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the Research Foundation of the State Ethnic Affairs Commission of People's Repulic of China (Grant No.~09ZY012), the National Natural Science Foundation of China (Grant No.~10904176), the ``Project 985'', and the ``Project 211'' of Mi

Cite this article: 

Yang Yu-Ping(杨玉平), Zhang Zhen-Wei(张振伟), Shi Yu-Lei(施宇蕾), Feng Shuai(冯帅), and Wang Wen-Zhong(王文忠) Far-infrared conductivity of CuS nanoparticles measured by terahertz time-domain spectroscopy 2010 Chin. Phys. B 19 043302

[1] Nair P K and Nair M T S 1991 J. Phys. D: Appl. Phys. 24 83
[2] Yamamoto T, Kubota E, Taniguchi A, Dev S, Tanaka K and Osakada K 1992 Chem. Mater. 4 570
[3] Sukarova B M, Najdoski M, Grozdanov L and Chunnilall C J 1997 J. Mol. Struct. 410 267
[4] Nair P K, Garcia V M, Fernandez A M, Ruiz H S and Nair M T S 1991 J. Phys. D: Appl. Phys. 24 441
[5] Chung J and Sohgn H 2002 J. Power Source 108 226
[6] Zhang W, Wen X and Yang S 2003 Langmuir 19 4420
[7] Chen X Y, Wang Z H, Wang X, Zhang R, Liu X Y, Lin W J and Qian Y T 2004 J. Cryst. Growth 263 570
[8] Wang W Z and Ao L 2008 Mater. Chem. Phys. 109 77
[9] Lu Q, Gao F and Zhao D 2002 Nano. Lett. 2 725
[10] Roy P and Srivastava K 2006 Cryst. Growth Deg. 6 1921
[11] Zhang P and Gao L 2003 J. Mater. Chem. 13 2007
[12] Baxter J B and Schmuttenmaer C A 2006 J. Phys. Chem. B 110 25229
[13] Murphy J E, Beard M C and Nozik A J 2006 J. Phys. Chem. B 110 25455
[14] Chen H and Wang L 2009 Chin. Phys. B 18 2785
[15] He X J, Wang Y, Wu Q, Zhang S Q and Zhuang L L 2009 Chin. Phys. B 18 1801
[16] Pilenti M P 2003 Nat. Mater. 2 145
[17] Lu Q, Gao F and Zhao D 2003 Nanotechnology 13 741
[18] Qu S M, Xie Q, Ma D K, Liang J B, Hu X K, Yu W C and Qian Y T 2005 Mater. Chem. Phys. 94 460
[19] Liao X, Chen N Y, Xu S, Yang S B and Zhu J J 2003 J. Cryst. Growth 252 593
[20] Xie X, Dai J and Zhang X C 2006 Phys. Rev. Lett. 96 075005
[21] Fujii M, Wada M, Kayashi S and Yamamoto K 1992 Phys. Rev. B 46 15930
[22] Bruggeman D A G 1935 Ann. Phys. 24 636
[23] MaxwellGarnett J C 1904 Philos. Trans. R. Soc. London Ser. A 203 385
[24] Black M R, Lin Y M, Cronin S B, Rabin O and Dresselhaus M S 2002 Phys. Rev. B 65 195417
[25] Smith N V 2001 Phys. Rev. B 64 155106
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[11] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[12] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[13] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
No Suggested Reading articles found!