|
|
Recombination during expansion of ultracold plasma |
Zhao Jian-Ming(赵建明)†, Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Signals of ultracold plasma are observed by two-photon ionization of laser-cooled caesium atoms in a magneto-optical trap. Recombination of ions and electrons into Rydberg atoms during the expansion of ultracold plasma is investigated by using state-selective field ionization spectroscopy. The dependences of recombination on initial electron temperature (1--70 K) and initial ion density ($ \sim $10$^{10}$ cm$^{ - 3})$ are investigated. The measured dependence on initial ion density is $N^{1.547\pm 0.004}$ at a delay time of 5 $\mu $s. The recombination rate rapidly declines as initial electron temperature increases when delay time is increased. The distributions of Rydberg atoms on different values of principal quantum number $n$, i.e. $n=30$--60, at an initial electron temperature of 3.3 K are also investigated. The main experimental results are approximately explained by the three-body recombination theory.
|
Received: 24 June 2009
Revised: 28 August 2009
Accepted manuscript online:
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
Fund: Project supported by the National
Basic Research Program of China (Grant No.~2006CB921603), the
National Natural Science Foundation of China (Grant Nos.~60978018,
60978001, 10934004 and 60778008), and the Foundation of the Ministry
of Education of China a |
Cite this article:
Zhao Jian-Ming(赵建明), Zhang Lin-Jie(张临杰), Feng Zhi-Gang(冯志刚), Li Chang-Yong(李昌勇), and Jia Suo-Tang(贾锁堂) Recombination during expansion of ultracold plasma 2010 Chin. Phys. B 19 043202
|
[1] |
Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C and Rolston S L 1999 Phys. Rev. Lett. 83 4776
|
[2] |
Robinson M P, Tolra B L, Noel M W, Gallagher T F and Pillet P 2000 Phys. Rev. Lett. 85 4466
|
[3] |
Kulin S, Killian T C, Bergeson S D and Rolston S L 2000 Phys. Rev. Lett. 86 318
|
[4] |
Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B and Killian K C 2004 Phys. Rev. Lett. 92 143001
|
[5] |
Robicheaux F and Hanson J D 2002 Phys. Rev. Lett. 88 055002
|
[6] |
Killian T C, Lim M J, Kulin S, Dumke R, Bergeson S D and Rolston S L 2001 Phys. Rev. Lett. 86 3759
|
|
[Fletcher R S, Zhang X L and Rolston S L 2007 Phys. Rev. Lett. 99 145001
|
[7] |
Kuzmin S G and O'Neil T M 2002 Phys. Rev. Lett. 88 065003
|
[7a] |
Kuzmin S G and O'Neil T M 2002 Phys. Plasmas 9 3743
|
[8] |
Mazevet S, Collins L A and Kress J D 2002 Phys. Rev. Lett. 88 } 055001
|
[9] |
Robicheaux F and Hanson J D 2003 Phys. Plasmas 10 2217
|
[10] |
Pohl T, Pattard T and Rost J M 2004 Phys. Rev. A 70 033416
|
|
[Pohl T, Vrinceanu D and Sadeghpour H R 2008 Phys. Rev. Lett. 100 223201
|
[11] |
Cummings E A, Daily J E, Durfee D S and Bergeson S D 2005 Phys. Rev. Lett. 95 235001
|
|
[Cummings E A, Daily J E, Durfee D S and Bergeson S D 2005 Phys. Plasmas 12 123501
|
[12] |
Chen Y C, Simien C E, Laha S, Gupta P, Martinez Y N, Mickelson P G, Nagel S B and Killian T C 2004 Phys. Rev. Lett. 93 265003
|
[13] |
Zhang X L, Fletcher R S and Rolston S L 2008 Phys. Rev. Lett. 100 235002
|
[14] |
Mansbach P and Keck J 1969 Phys. Rev. 181 275
|
[15] |
Hahn Y 1997 Phys. Lett. A 231 82
|
|
[ Hahn Y 2000 Phys. Lett. A 264 465
|
[16] |
Amoretti M, Amsler C, Bonomi G, Bouchta A, Bowe P, Carraro C, Cesar C L, Charlton M, Collier M J T, Doser M, Filippini V, Fine K S, Fontana A, Fujiwara M C, Funakoshi R, Genova P, Hangst J S, Hayano R S, Holzscheiter M H, Jrgensen L V, Lagomarsino V, Landua R, Lindelof D, Lodi Rizzini E, Macri M, Madsen N, Manuzio G, Marchesotti M, Montagna P, Pruys H, Regenfus C, Riedler P, Rochet J, Rotondi A, Rouleau G, Testera G, Variola A, Watson T L and Van der Werf D P 2002 Nature 419 456
|
[17] |
Jing Q, Feng Z G, Zhang L J, Li C Y, Zhao J M and Jia S T 2008 Chin. Phys. Lett. 25 4248
|
[17a] |
Zhang L J, Feng Z G, Li A L, Zhao J M, Li C Y and Jia S T 2009 Chin. Phys. B18 1838
|
[18] |
Feng Z G, Zhang L J, Zhao J M, Li C Y, Li A L and Jia S T 2008 Chin. Phys. Lett. 25 2661
|
[19] |
Gallagher T 1994 Rydberg Atoms} (Cambridge: Cambridge University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|