|
|
Investigations of the dielectronic recombination of phosphorus-like tin at CSRm |
Xin Xu(许鑫)1,2, Shu-Xing Wang(汪书兴)1,2, Zhong-Kui Huang(黄忠魁)3, Wei-Qiang Wen(汶伟强)3, Han-Bing Wang(汪寒冰)3, Tian-Heng Xu(徐天衡)5, Xiao-Ya Chuai(啜晓亚)3,4, Li-Jun Dou(豆丽君)3,4,8, Wei-Qing Xu(徐卫青)6, Chong-Yang Chen(陈重阳)5, Chuan-Ying Li(李传莹)7, Jian-Guo Wang(王建国)7, Ying-Long Shi(师应龙)8, Chen-Zhong Dong(董晨钟)9, Li-Jun Mao(冒立军)3, Da-Yu Yin(殷达钰)3, Jie Li(李杰)3, Xiao-Ming Ma(马晓明)3, Jian-Cheng Yang(杨建成)3, You-Jin Yuan(原有进)3, Xin-Wen Ma(马新文)3, Lin-Fan Zhu(朱林繁)1,2 |
1 Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
4 School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China;
5 Shanghai EBIT Laboratory, Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application(MOE), Fudan University, Shanghai 200433, China;
6 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China;
7 The Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
8 Institute for Fundamental Physics, Tianshui Normal University, Tianshui 741000, China;
9 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract The electron-ion recombination for phosphorus-like 112Sn35+ has been measured at the main cooler storage ring of the Heavy Ion Research Facility in Lanzhou, China, employing an electron-ion merged-beams technique. The absolute total recombination rate coefficients for electron-ion collision energies from 0 eV-14 eV are presented. Theoretical calculations of recombination rate coefficients were performed using the Flexible Atomic Code to compare with the experimental results. The contributions of dielectronic recombination and trielectronic recombination on the experimental rate coefficients have been identified with the help of the theoretical calculation. The present results show that the trielectronic recombination has a substantial contribution to the measured electron-ion recombination spectrum of 112Sn35+. Although a reasonable agreement is found between the experimental and theoretical results the precise calculation of the electron-ion recombination rate coefficients for M-shell ions is still challengeable for the current theory.
|
Received: 31 January 2018
Revised: 09 March 2018
Accepted manuscript online:
|
PACS:
|
34.80.Lx
|
(Recombination, attachment, and positronium formation)
|
|
29.20.db
|
(Storage rings and colliders)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2017YFA0402300) and the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos.U1732133,11320101003,11611530684,and 11604003). |
Corresponding Authors:
Xin-Wen Ma, Lin-Fan Zhu
E-mail: x.ma@impcas.ac.cn;lfzhu@ustc.edu.cn
|
Cite this article:
Xin Xu(许鑫), Shu-Xing Wang(汪书兴), Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Han-Bing Wang(汪寒冰), Tian-Heng Xu(徐天衡), Xiao-Ya Chuai(啜晓亚), Li-Jun Dou(豆丽君), Wei-Qing Xu(徐卫青), Chong-Yang Chen(陈重阳), Chuan-Ying Li(李传莹), Jian-Guo Wang(王建国), Ying-Long Shi(师应龙), Chen-Zhong Dong(董晨钟), Li-Jun Mao(冒立军), Da-Yu Yin(殷达钰), Jie Li(李杰), Xiao-Ming Ma(马晓明), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Xin-Wen Ma(马新文), Lin-Fan Zhu(朱林繁) Investigations of the dielectronic recombination of phosphorus-like tin at CSRm 2018 Chin. Phys. B 27 063402
|
[1] |
Dubau J and Volonte S 1980 Rep. Prog. Phys. 43 199
|
[2] |
Müller Alfred 1995 in Atomic and Plasma-Material Interaction Data for Fusion, Nucl. Fusion 6 59
|
[3] |
Smith R K and Brickhouse N S 2014 Adv. At. Mol. Opt. Phys. 63 271
|
[4] |
Badnell N R, O'Mullane M G, Summers H P, Altun Z, Bautista M A, Colgan J, Gorczyca T W, Mitnik D M, Pindzola M S and Zatsarinny O 2003 Astron. Astrophys. 406 1151
|
[5] |
Müller A 2008 Adv. At. Mol. Opt. Phys. 55 293
|
[6] |
Schippers S 1999 Phys. Scr. T 80 158
|
[7] |
Mohr P J, Plunien G and Soff G 1998 Phys. Rep. 293 227
|
[8] |
Lestinsky M, Badnell N R, Bernhardt D, Grieser M, Hoffmann J, Lukić D, Müller A, Orlov D A, Repnow R, Savin D W, Schmidt E W, Schnell M, Schippers S, Wolf A and Yu D 2009 Astrophys. J. 698 648
|
[9] |
Novotný O, Badnell N R, Bernhardt D, Grieser M, Hahn M, Krantz C, Lestinsky M, Müller A, Repnow R, Schippers S, Wolf A and Savin D W 2012 Astrophys. J. 753 57
|
[10] |
Schnell M, Gwinner G, Badnell N R, Bannister M E, Bohm S, Colgan J, Kieslich S, Loch S D, Mitnik D, Muller A, Pindzola M S, Schippers S, Schwalm D, Shi W, Wolf A and Zhou S G 2003 Phys. Rev. Lett. 91 043001
|
[11] |
Fogle M, Badnell N R, Glans P, Loch S D, Madzunkov S, Abdel-Naby Sh A, Pindzola M S and Schuch R 2005 Astron. Astrophys. 442 757
|
[12] |
Beilmann C, Harman Z, Mokler P H, Bernitt S, Keitel C H, Ullrich J and López-Urrutia J R C 2013 Phys. Rev. A 88 062706
|
[13] |
Schippers S 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 350 61
|
[14] |
Brandau C, Kozhuharov C 2015 Springer Series on At., Opt. Plasma Phys. 68 283
|
[15] |
Schuch R and Böhm S 2007 J. Phys. Conf. Ser. 88 012002
|
[16] |
Huang Z K, Wen W Q, Wang H B, Xu X, Zhu L F, Chuai X Y, Yuan Y J, Zhu X L, Han X Y, Mao L J, Li J, Ma X M, Yan T L, Yang J C, Xiao G Q, Xia J W and Ma X 2015 Phys. Scr. T166 014023
|
[17] |
Kieslich S, Schippers S, Shi W, Müller A, Gwinner G, Schnell M, Wolf A, Lindroth E and Tokman M 2004 Phys. Rev. A 70 042714
|
[18] |
Lestinsky M, Lindroth E, Orlov D A, Schmidt E W, Schippers S, Böhm S, Brandau C, Sprenger F, Terekhov A S, Müller A and Wolf A 2008 Phys. Rev. Lett. 100 033001
|
[19] |
Brandau C, Kozhuharov C, Müller A, Shi W, Schippers S, Bartsch T, Böhm S, Böhme C, Hoffknecht A, Knopp H, Grün N, Scheid W, Steih T, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T and Stachura Z 2003 Phys. Rev. Lett. 91 073202
|
[20] |
Lindroth E, Danared H, Glans P, Pešić Z, Tokman M, Vikor G and Schuch R 2001 Phys. Rev. Lett. 86 5027
|
[21] |
Biedermann C, Förster A, Fußmann G and Radtke R 1997 Phys. Scr. T73 360
|
[22] |
Nakamura N, Kavanagh A P, Watanabe H, Sakaue H A, Li Y, Kato D, Currell F J and Ohtani S 2008 Phys. Rev. Lett. 100 073203
|
[23] |
Tu B, Yao K, Shen Y, et al. 2017 Phys. Rev. A 96 032705
|
[24] |
Jörg H, Hu Z, Bekker H, Blessenohl M A, Hollain D, Fritzsche S, Surzhykov A, López-Urrutia J R C and Tashenov S 2015 Phys. Rev. A 91 042705
|
[25] |
Takacs E, Kimmel T D, Brandenburg K H, Wilson R K, Gall A C, Harriss J E and Sosolik C E 2015 AIP Conf. Proc 1640 154
|
[26] |
Huang Z K, Wen W Q, Xu X, et al. 2017 Astrophys. J. Suppl. Ser. 235 2
|
[27] |
Bocharov V, Bubley A, Boimelstein, et al. 2004 Nucl. Instrum. Methods A 532 144
|
[28] |
Wen W Q, Ma X, Xu W Q, Meng L J, Zhu X L, Gao Y, Wang S L, Zhang P J, Zhao D M, Liu H P, Zhu L F, Yang X D, Li J, Ma X M, Yan T L, Yang J C, Yuan Y J, Xia J W, Xu H S and Xiao G Q 2013 Nucl. Instrum. Methods B 317 731
|
[29] |
Meng L J, Ma X, Parkhomchuk V V, Yang X D, Reva V B, Li J, Mao L J, Ma X M, Yan T L, Xia J W, Yuan Y J, Xu H S, Yang J C and Xiao G Q 2013 Chin. Phys. C 37 017004
|
[30] |
Mohamed T, Nikolić D, Lindroth E, Madzunkov S, Fogle M, Tokman M and Schuch R 2002 Phys. Rev. A 66 022719
|
[31] |
Gu M F 2008 Can. J. Phys. 86 675
|
[32] |
Shore B W 1969 Astrophys. J. 158 1205
|
[33] |
Dou L J, Xie L Y, Zhang D H, Dong C Z, Wen W Q, Huang Z K and Ma X 2017 Eur. Phys. J. D 71 128
|
[34] |
Poth H 1990 Phys. Rep. 196 135
|
[35] |
Andersen L H and Bolko J 1990 Phys. Rev. A 42 1184
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|