Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 033401    DOI: 10.1088/1674-1056/ab69eb

Enhancement of electron-ion recombination rates at low energy range in the heavy ion storage ring CSRm

Nadir Khan1,2, Zhong-Kui Huang(黄忠魁)1, Wei-Qiang Wen(汶伟强)1,2, Shu-Xing Wang(汪书兴)3, Han-Bing Wang(汪寒冰)1, Wan-Lu Ma(马万路)3, Xiao-Long Zhu(朱小龙)1,2, Dong-Mei Zhao(赵冬梅)1, Li-Jun Mao(冒立军)1,2, Jie Li(李杰)1, Xiao-Ming Ma(马晓明)1, Mei-Tang Tang(汤梅堂)1, Da-Yu Yin(殷达钰)1, Wei-Qing Yang(杨维青)1, Jian-Cheng Yang(杨建成)1,2, You-Jin Yuan(原有进)1,2, Lin-Fan Zhu(朱林繁)3, Xin-Wen Ma(马新文)1,2
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hefei National Laboratory for Physical Sciences at Micro-scale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Recombination of Ar14+, Ar15+, Ca16+, and Ni19+ ions with electrons has been investigated at low energy range based on the merged-beam method at the main cooler storage ring CSRm in the Institute of Modern Physics, Lanzhou, China. For each ion, the absolute recombination rate coefficients have been measured with electron-ion collision energies from 0 meV to 1000 meV which include the radiative recombination (RR) and also dielectronic recombination (DR) processes. In order to interpret the measured results, RR cross sections were obtained from a modified version of the semi-classical Bethe and Salpeter formula for hydrogenic ions. DR cross sections were calculated by a relativistic configuration interaction method using the flexible atomic code (FAC) and AUTOSTRUCTURE code in this energy range. The calculated RR + DR rate coefficients show a good agreement with the measured value at the collision energy above 100 meV. However, large discrepancies have been found at low energy range especially below 10 meV, and the experimental results show a strong enhancement relative to the theoretical RR rate coefficients. For the electron-ion collision energy below 1 meV, it was found that the experimentally observed recombination rates are higher than the theoretically predicted and fitted rates by a factor of 1.5 to 3.9. The strong dependence of RR rate coefficient enhancement on the charge state of the ions has been found with the scaling rule of q3.0, reproducing the low-energy recombination enhancement effects found in other previous experiments.
Keywords:  storage ring      electron cooler      highly charged ions      radiative recombination enhancement  
Received:  28 November 2019      Revised:  06 January 2020      Accepted manuscript online: 
PACS:  34.80.Lx (Recombination, attachment, and positronium formation)  
  29.20.db (Storage rings and colliders)  
  32.30.-r (Atomic spectra?)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and U1732133).
Corresponding Authors:  Wei-Qiang Wen, Xin-Wen Ma     E-mail:;

Cite this article: 

Nadir Khan, Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Shu-Xing Wang(汪书兴), Han-Bing Wang(汪寒冰), Wan-Lu Ma(马万路), Xiao-Long Zhu(朱小龙), Dong-Mei Zhao(赵冬梅), Li-Jun Mao(冒立军), Jie Li(李杰), Xiao-Ming Ma(马晓明), Mei-Tang Tang(汤梅堂), Da-Yu Yin(殷达钰), Wei-Qing Yang(杨维青), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Lin-Fan Zhu(朱林繁), Xin-Wen Ma(马新文) Enhancement of electron-ion recombination rates at low energy range in the heavy ion storage ring CSRm 2020 Chin. Phys. B 29 033401

[1] Müller A 2008 Adv. Atom. Mol. Opt. Phys. 55 293
[2] Wang S X, Huang Z K, Wen W Q, Chen C Y, Schippers S, Xu X, Sardar S, Khan N, Wang H B, Dou L J, Mahmood S, Zhao D M, Zhu X L, Mao L J, Ma X M, Li J, Tang M T, Mao R S, Yin D Y, Yuan Y J, Yang J C, Shi Y L, Dong C Z, Ma X W and Zhu L F 2019 Astron. Astrophys. 627 A171
[3] Wolf A, Gwinner G, Linkemann J, Saghiri A A, Schmitt M, Schwalm D, Grieser M, Beutelspacher M, Bartsch T, Brandau C, Hoffknecht A, Müller A, Schippers S, Uwira O and Savin D W 2000 Nucl. Instrum. Methods Phys. Res. Sect. A 441 183
[4] Holzscheiter M and Charlton M 1999 Rep. Prog. Phys. 62 1
[5] Gwinner G, Hoffknecht A, Bartsch T, Beutelspacher M, Eklöw N, Glans P, Grieser M, Krohn S, Lindroth E, Müller A, Saghiri A A, Schippers S, Schramm U, Schwalm D, Tokman M, Wissler G and Wolf A 2000 Phys. Rev. Lett. 84 4822
[6] Andersen L H, Bolko J and Kvistgaard P 1990 Phys. Rev. Lett. 64 729
[7] Wolf A, Berger J, Bock M, Habs D, Hochadel B, Kilgus G, Neureither G, Schramm U, Schwalm D, Szmola E, Müller A, Wagner M and Schuch R 1991 Z. Phys. D: Atoms. Molecules, Clusters 21 S69
[8] Gao H, DeWitt D R, Schuch R, Zong W, Asp S and Pajek M 1995 Phys. Rev. Lett. 75 4381
[9] Gao H, Schuch R, Zong W, Justiniano E, DeWitt D R, Lebius H and Spies W 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L499
[10] Shi W, Böhm S, Böhme C, Hoffknecht A, Kieslich S, Schippers S, Müller A, Kozhuharov C and Bosch F 2001 Eur. Phys. J. D 15 145
[11] Hoffknecht A, Schippers S, Muller A, Gwinner G, Schwalm D and Wolf A 2001 Phys. Scr. 2001 402
[12] Hoffknecht A, Brandau C, Bartsch T, Böhme C, Knopp H, Schippers S, Müller A, Kozhuharov C, Beckert K, Bosch F, Franzke B, Krämer A, Mokler P H, Nolden F, Steck M, Stöhlker T and Stachura Z 2000 Phys. Rev. A 63 012702
[13] Banaś D, Pajek M, Surzhykov A, Stöhlker T, Brandau C, Gumberidze A, Kozhuharov C, Beyer H, Böhm S and Bosch F 2015 Phys. Rev. A 92 032710
[14] Gao H, Asp S, Biedermann C, DeWitt D R, Schuch R, Zong W and Danared H 1996 Hyperfine Interact. 99 301
[15] Hoffknecht A, Bartsch T, Schippers S, Müller A, Eklöw N, Glans P, Beutelspacher M, Grieser M, Gwinner G and Saghiri A 1999 Phys. Scr. 1999 298
[16] Schippers S, Müller A, Gwinner G, Linkemann J, Saghiri A A and Wolf A 2001 Astrophys. J. 555 1027
[17] Shi W, Bartsch T, Böhme C, Brandau C, Hoffknecht A, Knopp H, Schippers S, Müller A, Kozhuharov C, Beckert K, Bosch F, Franzke B, Mokler P H, Nolden F, Steck M, Stöhlker T and Stachura Z 2002 Phys. Rev. A 66 022718
[18] Schippers S, Schnell M, Brandau C, Kieslich S, Müller A and Wolf A 2004 Astron. & Astrophys. 421 1185
[19] Schmidt E W, Schippers S, Müller A, Lestinsky M, Sprenger F, Grieser M, Repnow R, Wolf A, Brandau C, Lukić D, Schnell M and Savin D W 2006 Astrophys. J. 641 L157
[20] Spreiter Q and Toepffer C 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2347
[21] Hörndl M, Yoshida S, Tökési K and Burgdörfer J 2003 Hyperfine Interact. 146-147 13
[22] Hörndl M, Yoshida S, Wolf A, Gwinner G and Burgdörfer J 2005 Phys. Rev. Lett. 95 243201
[23] Wu Y, Zeng S L, Duan B, Yan J, Wang J G, Dong C Z and Ma X W 2007 Chin. Phys. Lett. 24 404
[24] Zeng S L, Peng J Q, Li P, Li Y M, Yan J and Wang J G 2005 Acta Phys. Sin. 54 2625 (in Chinese)
[25] Hörndl M, Yoshida S, Wolf A, Gwinner G, Seliger M and Burgdörfer J 2006 Phys. Rev. A 74 052712
[26] Huang Z, Wen W, Wang H, Xu X, Zhu L, Chuai X, Yuan Y, Zhu X, Han X and Mao L 2015 Phys. Scr. 2015 014023
[27] Xu X, Wang S X, Huang Z K, Wen W Q, Wang H B, Xu T H, Chuai X Y, Dou L J, Xu W Q and Chen C Y 2018 Chin. Phys. B 27 063402
[28] Khan N, Huang Z K, Wen W Q, Mahmood S, Dou L J, Wang S X, Xu X, Wang H B, Chen C Y and Chuai X Y 2018 Chin. Phys. C 42 064001
[29] Zhao H W, Sun L T, Guo J W, Lu W, Xie D Z, Hitz D, Zhang X Z and Yang Y 2017 Phys. Rev. Accel. Beams 20 094801
[30] Wen W Q, Ma X, Xu W Q, Meng L J, Zhu X L, Gao Y, Wang S L, Zhang P J, Zhao D M, Liu H P, Zhu L F, Yang X D, Li J, Ma X M, Yan T L, Yang J C, Yuan Y J, Xia J W, Xu H S and Xiao G Q 2013 Nucl. Instrum. & Methods Phys. Res. Sect. B 317 731
[31] Kilgus G, Habs D, Schwalm D, Wolf A, Badnell N R and Müller A 1992 Phys. Rev. A 46 5730
[32] Bethe H A and Salpeter E E 2012 Quantum mechanics of one-and two-electron atoms (Springer Science & Business Media)
[33] Badnell N 2011 Comput. Phys. Commun. 182 1528
[34] Gu M 2003 Astrophys. J. 590 1131
[35] Savin D W, Kahn S M, Gwinner G, Grieser M, Repnow R, Saathoff G, Schwalm D, Wolf A, Muller A, Schippers S, Zavodszky P A, Chen M H, Gorczyca T W, Zatsarinny O and Gu M F 2003 Astrophys. J. Suppl. Ser. 147 421
[36] Huang Z, Wen W, Xu X, Mahmood S, Wang S, Wang H, Dou L, Khan N, Badnell N and Preval S 2018 Astrophys. J. Suppl. Ser. 235 2
[37] Wang S, Xu X, Huang Z, Wen W, Wang H, Khan N, Preval S, Badnell N, Schippers S and Mahmood S 2018 Astrophys. J. 862 134
[38] Heerlein C, Zwicknagel G and Toepffer C 2002 Phys. Rev. Lett. 89 083202
[39] Heerlein C, Zwicknagel G and Toepffer C 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 205 395
[1] Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas
L Wu(吴磊), M G Su(苏茂根), Q Min(敏琦), S Q Cao(曹世权), S Q He(何思奇), D X Sun(孙对兄), C Z Dong(董晨钟). Chin. Phys. B, 2019, 28(7): 075201.
[2] Investigations of the dielectronic recombination of phosphorus-like tin at CSRm
Xin Xu(许鑫), Shu-Xing Wang(汪书兴), Zhong-Kui Huang(黄忠魁), Wei-Qiang Wen(汶伟强), Han-Bing Wang(汪寒冰), Tian-Heng Xu(徐天衡), Xiao-Ya Chuai(啜晓亚), Li-Jun Dou(豆丽君), Wei-Qing Xu(徐卫青), Chong-Yang Chen(陈重阳), Chuan-Ying Li(李传莹), Jian-Guo Wang(王建国), Ying-Long Shi(师应龙), Chen-Zhong Dong(董晨钟), Li-Jun Mao(冒立军), Da-Yu Yin(殷达钰), Jie Li(李杰), Xiao-Ming Ma(马晓明), Jian-Cheng Yang(杨建成), You-Jin Yuan(原有进), Xin-Wen Ma(马新文), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(6): 063402.
[3] Charge state effect on the K-shell ionization of iron by xenon ions near the Bohr velocity
Zhou Xian-Ming (周贤明), Zhao Yong-Tao, Ren Jie-Ru (任洁茹), Cheng Rui (程锐), Lei Yu (雷瑜), Sun Yuan-Bo (孙渊博), Xu Ge (徐戈), Wang Yu-Yu (王瑜玉), Liu Shi-Dong (刘世东), Xiao Guo-Qing (肖国青). Chin. Phys. B, 2013, 22(11): 113402.
[4] Ionization and single electron capture in collision of highly charged Ar16+ ions with helium
Wang Fei(王菲) and Gou Bing-Cong(芶秉聪). Chin. Phys. B, 2008, 17(4): 1227-1230.
No Suggested Reading articles found!