Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 017301    DOI: 10.1088/1674-1056/ab592c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer

Yi-Fu Wang(王一夫)1,2,3, Mussaab I Niass1,2,3, Fang Wang(王芳)1,2,3, Yu-Huai Liu(刘玉怀)1,2,3
1 National Center of International Joint Research for Electronic Materials and Systems, Zhengzhou University, Zhengzhou 450001, China;
2 International Joint Laboratory of Electronic Materials and Systems, Zhengzhou University, Zhengzhou 450001, China;
3 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
Abstract  The design of the active region structures, including the modifications of structures of the quantum barrier (QB) and electron blocking layer (EBL), in the deep ultraviolet (DUV) AlGaN laser diode (LD) is investigated numerically with the Crosslight software. The analyses focus on electron and hole injection efficiency, electron leakage, hole diffusion, and radiative recombination rate. Compared with the reference QB structure, the step-like QB structure provides high radiative recombination and maximum output power. Subsequently, a comparative study is conducted on the performance characteristics with four different EBLs. For the EBL with different Al mole fraction layers, the higher Al-content AlGaN EBL layer is located closely to the active region, leading the electron current leakage to lower, the carrier injection efficiency to increase, and the radiative recombination rate to improve.
Keywords:  radiative recombination rate      step-like quantum barrier      aluminum-content-graded EBL  
Received:  12 June 2019      Revised:  15 October 2019      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  73.61.Ey (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the Special Project for Inter-government Collaboration of State Key Research and Development Program, China (Grant No. 2016YFE0118400), the Key Project of Science and Technology of Henan Province, China (Grant No. 172102410062), and the National Natural Science Foundation of China and Henan Provincial Joint Fund Key Project (Grant No. U1604263).
Corresponding Authors:  Fang Wang, Yu-Huai Liu     E-mail:  iefwang@zzu.edu.cn;ieyhliu@zzu.edu.cn

Cite this article: 

Yi-Fu Wang(王一夫), Mussaab I Niass, Fang Wang(王芳), Yu-Huai Liu(刘玉怀) Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer 2020 Chin. Phys. B 29 017301

[1] Wunderer T, Chua C L, Yang Z, Northrup J E, Johnson N M, Garrett G A, Shen H and Wraback M 2011 Appl. Phys. Express 4 092101
[2] Abe S, Sato S, Ito E, Tsukuda M, Tomiyama M and Ohno E 2002 Jpn. J. Appl. Phys. 41 1704
[3] Yoshida H, Yamashita Y, Kuwabara M and Kan H 2008 Appl. Phys. Lett. 93 241106
[4] Yang W, Li D, Liu N, Chen Z, Wang L, Liu L, Li L, Wan C, Chen W, Hu X and Du W 2012 Appl. Phys. Lett. 100 031105
[5] Bojarska A, Goss J, Stanczyk S, Makarowa I, Schiavon D, Czernecki R, Suski T and Perlin P 2018 Superlattices Microstruct. 116 114
[6] Ren Z, Lu Y, Yao H, Sun H, Liao C, Dai J, Chen C, Ryou J, Yan J, Wang J, Li J and Li X 2019 IEEE Photon. J. 11 8200511
[7] Shervin S, Oh S K, Park H J, Lee K, Asadirad M, Kim S, Kim J, Pouladi S, Lee S and Li X 2018 J. Phys. D: Appl. Phys. 51 105105
[8] Kim M, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[9] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 4056
[10] Piprek J and Nakamura S 2002 IEEE Lester Eastman Conference on High Performance Devices, August 6-8, 2005, Newark, Delaware, p. 254
[11] Zhang Y Y and Yin Y A 2011 Appl. Phys. Lett. 99 221103
[12] Alahyarizadeh G, Hassan Z, Thahab S M, Yam F K and Ghazai A J 2013 Optik 124 6765
[13] Ghazai A J, Thahab S M, Hassan H A and Hassan Z 2011 Opt. Express 19 9245
[14] Lee S, Cho S Y, Ryu H Y, Son J K, Paek H S, Sakong T, Jang T, Choi K K, Ha K H, Ha M H, Yang M H, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 111101
[15] Zhang N, Liu Z, Wei T, Zhang L, Wei X, Wang X, Lu H, Li J and Wang J 2012 Appl. Phys. Lett. 100 053504
[16] Zhang Y, Kao T, Liu J, Lochner Z, Kim S, Ryou J, Dupuis R D and Shen S 2011 J. Appl. Phys. 109 083115
[17] Yin Y A, Wang N, Li S, Zhang Y and Fan G 2015 Appl. Phys. A 119 41
[18] Zhang Y, Yu L, Li K, Pi H, Diao J, Wang X, Shen Y, Zhang C, Hu W, Song W and Li S 2015 Superlattices Microstruct. 82 151
[19] Fan X, Sun H, Li X, Sun H, Zhang C, Zhang Z and Guo Z 2015 Superlattices Microstruct. 88 467
[20] Liu C, Ren Z, Chen X, Zhao B, Wang X and Li S 2014 IEEE Photon. Technol. Lett. 26 1368
[21] Lu L, Zhang Y, Xu F J, Ding G G and Liu Y H 2018 Superlattices Microstruct. 118 55
[22] Yang W, Li D, He J and Hu X 2013 Phys. Status Solidi C 10 346
[23] Satter M M, Lochner Z, Member S, Kao T, Liu Y, Li X, Shen S, Dupuis R D and Yoder P D 2014 IEEE J. Quantum Electron. 50 166
[24] Wang Y, Niass M I, Wang F and Liu Y 2019 Chin. Phys. Lett. 36 057301
[1] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[2] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[3] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[4] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[5] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[6] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[7] Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells
H Noverola-Gamas, L M Gaggero-Sager, O Oubram. Chin. Phys. B, 2019, 28(12): 124207.
[8] Optical response of an inverted InAs/GaSb quantum well in an in-plane magnetic field
Xiaoguang Wu(吴晓光). Chin. Phys. B, 2019, 28(10): 107302.
[9] Aging mechanism of GaN-based yellow LEDs with V-pits
Tian-Ran Zhang(张天然), Fang Fang(方芳), Xiao-Lan Wang(王小兰), Jian-Li Zhang(张建立), Xiao-Ming Wu(吴小明), Shuan Pan(潘栓), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2019, 28(6): 067305.
[10] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[11] High mobility ultrathin ZnO p-n homojunction modulated by Zn0.85Mg0.15O quantum barriers
Jing-Jing Yang(杨景景), Qing-Qing Fang(方庆清), Wen-Han Du(杜文汉), Ke-Ke Zhang, Da-Shun Dong(董大舜). Chin. Phys. B, 2018, 27(3): 037804.
[12] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[13] Optimizing effective phase modulation in coupled double quantum well Mach-Zehnder modulators
Guang-Hui Wang(王光辉), Jin-Ke Zhang(张金珂). Chin. Phys. B, 2018, 27(2): 027801.
[14] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
[15] Improvement of green InGaN-based LEDs efficiency using a novel quantum well structure
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Ziguang Ma(马紫光), Haiyan Wu(吴海燕), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2017, 26(8): 087311.
No Suggested Reading articles found!