CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer |
Yi-Fu Wang(王一夫)1,2,3, Mussaab I Niass1,2,3, Fang Wang(王芳)1,2,3, Yu-Huai Liu(刘玉怀)1,2,3 |
1 National Center of International Joint Research for Electronic Materials and Systems, Zhengzhou University, Zhengzhou 450001, China; 2 International Joint Laboratory of Electronic Materials and Systems, Zhengzhou University, Zhengzhou 450001, China; 3 School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract The design of the active region structures, including the modifications of structures of the quantum barrier (QB) and electron blocking layer (EBL), in the deep ultraviolet (DUV) AlGaN laser diode (LD) is investigated numerically with the Crosslight software. The analyses focus on electron and hole injection efficiency, electron leakage, hole diffusion, and radiative recombination rate. Compared with the reference QB structure, the step-like QB structure provides high radiative recombination and maximum output power. Subsequently, a comparative study is conducted on the performance characteristics with four different EBLs. For the EBL with different Al mole fraction layers, the higher Al-content AlGaN EBL layer is located closely to the active region, leading the electron current leakage to lower, the carrier injection efficiency to increase, and the radiative recombination rate to improve.
|
Received: 12 June 2019
Revised: 15 October 2019
Accepted manuscript online:
|
PACS:
|
73.21.Fg
|
(Quantum wells)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the Special Project for Inter-government Collaboration of State Key Research and Development Program, China (Grant No. 2016YFE0118400), the Key Project of Science and Technology of Henan Province, China (Grant No. 172102410062), and the National Natural Science Foundation of China and Henan Provincial Joint Fund Key Project (Grant No. U1604263). |
Corresponding Authors:
Fang Wang, Yu-Huai Liu
E-mail: iefwang@zzu.edu.cn;ieyhliu@zzu.edu.cn
|
Cite this article:
Yi-Fu Wang(王一夫), Mussaab I Niass, Fang Wang(王芳), Yu-Huai Liu(刘玉怀) Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer 2020 Chin. Phys. B 29 017301
|
[1] |
Wunderer T, Chua C L, Yang Z, Northrup J E, Johnson N M, Garrett G A, Shen H and Wraback M 2011 Appl. Phys. Express 4 092101
|
[2] |
Abe S, Sato S, Ito E, Tsukuda M, Tomiyama M and Ohno E 2002 Jpn. J. Appl. Phys. 41 1704
|
[3] |
Yoshida H, Yamashita Y, Kuwabara M and Kan H 2008 Appl. Phys. Lett. 93 241106
|
[4] |
Yang W, Li D, Liu N, Chen Z, Wang L, Liu L, Li L, Wan C, Chen W, Hu X and Du W 2012 Appl. Phys. Lett. 100 031105
|
[5] |
Bojarska A, Goss J, Stanczyk S, Makarowa I, Schiavon D, Czernecki R, Suski T and Perlin P 2018 Superlattices Microstruct. 116 114
|
[6] |
Ren Z, Lu Y, Yao H, Sun H, Liao C, Dai J, Chen C, Ryou J, Yan J, Wang J, Li J and Li X 2019 IEEE Photon. J. 11 8200511
|
[7] |
Shervin S, Oh S K, Park H J, Lee K, Asadirad M, Kim S, Kim J, Pouladi S, Lee S and Li X 2018 J. Phys. D: Appl. Phys. 51 105105
|
[8] |
Kim M, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[9] |
Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 4056
|
[10] |
Piprek J and Nakamura S 2002 IEEE Lester Eastman Conference on High Performance Devices, August 6-8, 2005, Newark, Delaware, p. 254
|
[11] |
Zhang Y Y and Yin Y A 2011 Appl. Phys. Lett. 99 221103
|
[12] |
Alahyarizadeh G, Hassan Z, Thahab S M, Yam F K and Ghazai A J 2013 Optik 124 6765
|
[13] |
Ghazai A J, Thahab S M, Hassan H A and Hassan Z 2011 Opt. Express 19 9245
|
[14] |
Lee S, Cho S Y, Ryu H Y, Son J K, Paek H S, Sakong T, Jang T, Choi K K, Ha K H, Ha M H, Yang M H, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 111101
|
[15] |
Zhang N, Liu Z, Wei T, Zhang L, Wei X, Wang X, Lu H, Li J and Wang J 2012 Appl. Phys. Lett. 100 053504
|
[16] |
Zhang Y, Kao T, Liu J, Lochner Z, Kim S, Ryou J, Dupuis R D and Shen S 2011 J. Appl. Phys. 109 083115
|
[17] |
Yin Y A, Wang N, Li S, Zhang Y and Fan G 2015 Appl. Phys. A 119 41
|
[18] |
Zhang Y, Yu L, Li K, Pi H, Diao J, Wang X, Shen Y, Zhang C, Hu W, Song W and Li S 2015 Superlattices Microstruct. 82 151
|
[19] |
Fan X, Sun H, Li X, Sun H, Zhang C, Zhang Z and Guo Z 2015 Superlattices Microstruct. 88 467
|
[20] |
Liu C, Ren Z, Chen X, Zhao B, Wang X and Li S 2014 IEEE Photon. Technol. Lett. 26 1368
|
[21] |
Lu L, Zhang Y, Xu F J, Ding G G and Liu Y H 2018 Superlattices Microstruct. 118 55
|
[22] |
Yang W, Li D, He J and Hu X 2013 Phys. Status Solidi C 10 346
|
[23] |
Satter M M, Lochner Z, Member S, Kao T, Liu Y, Li X, Shen S, Dupuis R D and Yoder P D 2014 IEEE J. Quantum Electron. 50 166
|
[24] |
Wang Y, Niass M I, Wang F and Liu Y 2019 Chin. Phys. Lett. 36 057301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|