Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037101    DOI: 10.1088/1674-1056/19/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Combined experimental and theoretical study on the effect of Nb content on martensitic transformation of NbRu shape memory alloys

Tan Chang-Long(谭昌龙)a)†, Cai Wei(蔡伟)b), and Tian Xiao-Hua(田晓华)a)
a College of Applied Science, Harbin University of Science and Technology, Harbin 150080, China; b School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  The effect of Nb content on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by experiments and first-principles calculations. We calculate the lattice parameters, density of states, charge density, and heats of formation of Nb50+xRu50-x $\beta$ phase. The results show that an increase in Nb content increases the stability of Nb50+xRu50-x $\beta$ phase, leading to a significant decrease of the $\beta$ to $\beta'$ martensitic transformation temperature. In addition, the mechanism of the effects of Nb content on phase stability and martensitic transformation temperature is studied on the basis of electronic structure.
Keywords:  high-temperature shape memory alloy      NbRu      electronic structure      martensitic transformation  
Received:  22 April 2009      Revised:  15 September 2009      Accepted manuscript online: 
PACS:  81.30.Kf (Martensitic transformations)  
  71.20.Be (Transition metals and alloys)  
  64.70.K-  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.66.Dk (Alloys )  
  82.60.Cx (Enthalpies of combustion, reaction, and formation)  
Fund: Project supported by the Youth Top-notch Innovative Talents Program of Harbin University of Science and Technology.

Cite this article: 

Tan Chang-Long(谭昌龙), Cai Wei(蔡伟), and Tian Xiao-Hua(田晓华) Combined experimental and theoretical study on the effect of Nb content on martensitic transformation of NbRu shape memory alloys 2010 Chin. Phys. B 19 037101

[1] Otsuka K and Ren X 2005 Prog. Mater. Sci 50 511
[2] Wayman C M 1992 Prog . Mater . Sci . 36 203
[3] Xu G L, Chen J D, Chen D, Ma J Z, Yu B H and Shi D H 2009 Chin . Phys. B18 744
[4] Tan C L, Cai W and Tian X H 2006 Chin . Phys. 15 2718
[5] Otsuka K and Ren X 1999 Intermetallics 7 511
[6] Beyer J and Mulder J H 1995 Mater. Res. Soc. Symp. Proc. 360 443
[7] Otsuka K and Wayman C M 1998 Shape Memory Materials (Cambridge: Cambridge University Press)
[8] Firstov G S, Humbeeck J V and Koval Y N 2004 Mater. Sci. Eng . A 378 2
[9] Chastaing K, Denquin A, Portier R and Vermaut P 2008 Mater. Sci.Eng . A 481--452702
[10] He Z R, Zhou J E and Furuya Y 2003 Mater. Sci. Eng . A 348 36
[11] Donkersloot H C and van Vucht J H N 1970 J. Less-Common Met . 20 83
[12] Das B K, Schmerling M A and Lieberman D S 1970 Mater. Sci. Eng . 6 248
[13] Scherling M A, Das B K and Lieberman D S 1970 Metall. Trans . 1 3273
[14] Das B and Lieberman D S 1975 Acta Metall . 23 579
[15] Das B, Stern E A and Lieberman D S 1976 Acta Metall. 24 37
[16] Fonda R W, Jones H N and Vandermeer R A 1998 Scripta Mater . 39 1031
[17] Fonda R W and Vandermeer R A 1997 Philos. Mag . A 76 119
[18] Fonda R W and Jones H N 1999 Mater. Sci. Eng . A 273--275 275
[19] Tan C L, Cai W and Tian X H 2007 Scripta Mater . 56 625
[20] Tan C L, Tian X H and Cai W 2008 Chin. Phys. Lett. 25 3372
[21] Gao X, Zheng Y F, Cai W, Zhang S and Zhao L C 2004 J. Mater.Sci. Technol . 20 97
[22] Segall M, Lindan P, Probet M, Pickard C, Hasnip P, Clark S and Payne M2002 J. Phys. Condens. Matter 14 2717
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Shapiro S M, Xu G, Gu G, Gardner J and Fonda R W 2006 Phys. Rev. B 73 214114
[25] Chen J, Li Y, Shang J X and Xu H B 2006 Appl. Phys. Lett. 89 231921
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[13] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[14] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[15] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
No Suggested Reading articles found!