Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 027101    DOI: 10.1088/1674-1056/19/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Elastic constants and anisotropy of RuB2 under pressure

Luo Fen(罗雰)a), Fu Min(傅敏)a), Ji Guang-Fu(姬广富)b), and Chen Xiang-Rong (陈向荣)a)c)†
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; b Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China; c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  The structural, elastic constants and anisotropy of RuB2 under pressure are investigated by first-principles calculations based on the plane wave pseudopotential density functional theory method within the local density approximation (LDA) as well as the generalized gradient approximation (GGA) for exchange and correlation. The results accord well with the available experimental and other theoretical data. The elastic constants, elastic anisotropy, and Debye temperature $\varTheta$ as a function of pressure are presented. It is concluded that RuB2 is brittle in nature at low pressure, whereas it becomes ductile at higher pressures. An analysis for the calculated elastic constant has been made to reveal the mechanical stability of RuB2 up to 100~GPa.
Keywords:  elastic properties      density functional theory      RuB2  
Received:  03 June 2009      Revised:  27 July 2009      Accepted manuscript online: 
PACS:  74.25.Ld (Mechanical and acoustical properties, elasticity, and ultrasonic Attenuation)  
  62.20.D- (Elasticity)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
  63.70.+h (Statistical mechanics of lattice vibrations and displacive phase transitions)  
  62.50.-p (High-pressure effects in solids and liquids)  
  74.70.Ad (Metals; alloys and binary compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10776022).

Cite this article: 

Luo Fen(罗雰), Fu Min(傅敏), Ji Guang-Fu(姬广富), and Chen Xiang-Rong (陈向荣) Elastic constants and anisotropy of RuB2 under pressure 2010 Chin. Phys. B 19 027101

[1] Nagamastu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63
[2] Cooper A S, Corenzwit E, Longinotti L D, Matthias B T and Zachariasen W H 1970 Proc. Nat. Acad. Sci. USA 67 313
[3] Kaczorowski D, Zaleski A J, Zogal O J and Klamut J 2001 IncipientSuperconductivity in TaB2, Proc. IX School on High TemperatureSuperconductivity}, ed. Szytu{\l}a A and Ko?odziejczyk A (Krynica-Czarny Potok: Poland) p. 81
[4] Gasparov V A, Sidorov N S, Zverkova I I and Kulakov M P 2001 JETP Lett. 7 3 532
[5] Rosner H, Pickett W E, Drechsler S L, Handstein A, Behr G, Fuchs G,Nenkov K, Muller K H and Eschrig H 2001 Phys. Rev. B 64 144516
[6] Nakamura J, Yamada N, Kuroki K, Callcott T A, Ederer D L, Denlinger J Dand Perera R C C 2001 Phys. Rev. B 64 174504
[7] Shein I R and Ivanovskii A L 2002 Phys. Solid State 44 1833
[8] Vandenberg J M, Matthias B T, Corenzwit E and Barz H 1975 Mater. Res. Bull. 10889
[9] Singh Y, Niazi A, Vannette M D, Prozorov R and Johnston D C 2007 Phys. Rev. B 76 214510
[10] Roof Jr R B and Kempter C P 1962 J. Chem. Phys. 37 1473
[11] Aronsson B 1963 Acta Chem. Scand. 17 2036
[12] Chiodo S, Gotsis H J, Russo N and Sicilia E 2006 Chem. Phys. Lett. 425 311
[13] Wang Y Q, Yuan L F and Yang J L 2008 Chin. Phys. Lett. 25 3036
[14] Hao X F, Xu Y H, Wu Z J, Zhou D F, Liu X J and Meng J 2008 J. Alloys Compd. 45 3413
[15] ?im?nek A 2007 Phys. Rev. B 75172108
[16] Vanderbilt D 1990 Phys. Rev. B 41 7892
[17] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 2100
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 1 3 5188
[20] Pfrommer B G, C?té M, Louie S G and Cohen M L 1997 J. Comp. Physiol. 131 233
[21] Milan V, Winker B, White J A, Packard C J, Payne M C, Akhmatskaya E Vand Nobes R H 2000 Int. J. Quantum Chem. 77 895
[ Payne M C, Teter M P, Allen D C andArias T A 1992 Rev. Mod. Phys. 64 1045
[22] Murnaghan F D 1944 Proc. Nat. Acad. Sci. USA 30 244
[23] Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H andKaner R B 2005 J. Am. Chem. Soc. 127 7264
[24] McSkimin H J and Andreatch P 1972 J. Appl. Phys. 4 3 2944
[25] Karki B B, Stixrude L, Clark S J, Warren M C, Ackland G J and Crain J1997 Am. Mineral. 82 51
[25a] Wentzcovitch R M, Ross N L and Price G D 1995 Phys. Earth Planet. Inter. 90 101
[26] Ravindran P, Fast L, Korzhavyi P A, Johnnsson B, Wills J and Eriksson O1998 J. Appl. Phys. 84 4891
[27] Pugh S F 1954 Philos. Mag. 45 823
[28] McSkimin H J and Andreatch P 1972 Jr. J. Appl. Phys. 4 3 2944
[29] Zhu J, Yu J X, Wang Y J, Chen X R and Ji G F 2008 Chin. Phys. B 17 2216
[30] Li X F, Peng W M, Shen X M , Ji G F and Zhao F 2009 Acta Phys. Sin. 58 2660(in Chinese)
[31] Li X F, Ji G F, Zhao F, Chen X R and Alfe D 2009 J. Phys.: Condens. Matter 21 025505
[32] Wallace D C 1972 Thermodynamics of Crystals(New York: Wiley)
[32a] Sin'ko G V and Smirnov N A 2002 J. Phys.: Condens. Matter 146989
[33] Connétable D and Thomas O 2009 Phys. Rev. B 79 094101
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!