Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024210    DOI: 10.1088/1674-1056/19/2/024210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Partial entropy change and entanglement in the mixed state for a Jaynes-Cummings model with Kerr medium

Zhang Yu-Qing(张玉青), Tan Lei(谭磊), Zhu Zhong-Hua(朱中华), Xiong Zu-Zhou(熊祖周), and Liu Li-Wei(刘利伟)
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
Abstract  By using the algebraic dynamical approach, an atom--field bipartite system in mixed state is employed to investigate the partial entropy change and the entanglement in a cavity filled with Kerr medium. The effects of different nonlinear intensities are studied. One can find that the Kerr nonlinearity can reduce the fluctuation amplitudes of the partial entropy changes and the entanglement of the two subsystems, and also influence their periodic evolution. Meanwhile, increasing the Kerr nonlinear strength can convert the anti-correlated behaviour of the partial entropy change to the positively correlated behaviour. Furthermore, the entanglement greatly depends on the temperature. When the temperature or the nonlinear intensity increases to a certain value, the entanglement can be suppressed greatly.
Keywords:  entanglement      algebraic dynamical method      Jaynes--Cummings model      Kerr medium  
Received:  08 June 2009      Revised:  15 June 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  32.80.-t (Photoionization and excitation)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704031), the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (Grant No. J0630313), the Fundamental Research Fund for Physics and Mathematics of Lanzhou University (Grant No. Lzu05001), and the Natural Science Foundation of Gansu Province, China (Grant No. 3ZS061-A25-035).

Cite this article: 

Zhang Yu-Qing(张玉青), Tan Lei(谭磊), Zhu Zhong-Hua(朱中华), Xiong Zu-Zhou(熊祖周), and Liu Li-Wei(刘利伟) Partial entropy change and entanglement in the mixed state for a Jaynes-Cummings model with Kerr medium 2010 Chin. Phys. B 19 024210

[1] Schumacher B and Westmoreland M 1997 Phys. Rev. A 56 131
[2] Majumdar K 2009 Phys. Rev. B} {79 115134
[3] Osenda O and Serra P 2007 Phys. Rev. A 75042331
[4] Carvalho André R R, Mintert F and Buchleitner A 2004 Phys. Rev. Lett. 93 230501
[5] Yu C S, Yi X X and Song H S 2008 Phys. Rev. A 78 062330
[6] Angelo R M, Vitiello S A, De Aguiar M A M and Furuya K 2004 Physica A 338 458
[7] Li Z G, Fei S M, Wang Z D and Liu W M 2009 Phys. Rev. A 79 024303
[8] Bellomo B, Franco R L and Compagno G 2008 Phys. Rev.A 78 062309
[9] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[10] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 543824
[Henderson L and Vedral V 2000 Phys. Rev. Lett. 842263
[Horodecki M, Horodecki P and Horodecki R 2000 Phys. Rev.Lett. 84 2014
[11] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 782275
[11a] Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619
[12] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[13] Bose S, Fuentes-Guridi I, Knigt P L and Vedral V 2001 Phys. Rev. Lett. 87 050401
[13a] Bose S, Fuentes-Guridi I, Knigt P L and Vedral V 2001 Phys. Rev. Lett. 87 279901
[14] Campbell S and Paternostro M 2009 Phys. Rev. A 79 032314
[15] Liu Z and Fan H 2009 Phys. Rev. A 79 032306
[16] Borras A, Majtey A P, Plastino A R, Casas M and Plastino A 2009 Phys. Rev. A 79 022112
[17] Rendell R W and Rajagopal A K 2003 Phys. Rev. A 67 062110
[18] Zheng S B 2007 Phys. Rev. A 75032114
[19] Boukobza E and Tannor D J 2005 Phys. Rev. A 71 063821
[20] Yan X Q, Shao B and Zou J 2008 Chaos, Solitons and Fractals 37 835
[21] Hillery M 1991 Phys. Rev. A 44 4578
[22] Chaba A N, Collett M J and Walls D F 1992 Phys. Rev. A 46 1499
[23] Zambrini R, Hoyuelos M, Gatti A, Colet L, Lugiato M S and Miguel M S 2007 Phys. Rev. A 62 063801
[24] Vitali D, Fortunato M and Tombesi P 2000 Phys. Rev. Lett. 85 445
[25] Huang Y X, Zhao P Y, Huang X and Zhan M S 2004 Acta Phys. Sin. 5 3 75 (in Chinese)
[26] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[27] Yang J, Ren M, Yu Y F, Zhang Z M and Liu S H 2008 Acta Phys. Sin. 57 887 (in Chinese)
[28] Jie Q L, Wang S J and Wei L F 1997 J. Phys. A 306147
[ 28a]Xu J B and Zou X B 1999 Phys. Rev. A 60 474
[29] Werner M J and Risken H 1991 Phys. Rev. A 44 4623
[30] Joshi A and Puri R R 1992 Phys. Rev. A 45 5056
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!