CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Incoherently coupled soliton pairs in nonlocal nonlinear media |
Lu Ke-Qing(卢克清)a)†, Li Ke-Hao(李可昊)a)c), Zhao Wei(赵卫)a), Zhang Yi-Qi(张贻齐)a), Zhang Mei-Zhi(张美志) a),Zhang Yu-Hong(张玉虹)a), Cheng Guang-Hua(程光华)a), and Zhang Yan-Peng(张彦鹏)b) |
a State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; b Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; c Graduate School of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We show that incoherently coupled soliton pairs can exist in nonlocal Kerr-type nonlinear media. Such solitons can propagate in bright--bright, dark--dark, and gray--gray configurations. When the nonlocal nonlinearity is absent, these bright--bright and dark--dark soliton pairs are those observed previously in local Kerr-type nonlinear media. Our analysis indicates that for a self-focusing nonlinearity the intensity full width half maximum (FWHM) of the bright--bright pair components increases with the degree of nonlocality of the nonlinear response, whereas for a self-defocusing nonlinearity the intensity FWHM of the dark--dark and gray--gray pair components decreases with the increase in the degree of nonlocality of the nonlinear response. The stability of these soliton pairs has been investigated numerically and it has been found that they are stable.
|
Received: 28 August 2008
Revised: 13 February 2009
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.65.Hw
|
(Phase conjugation; photorefractive and Kerr effects)
|
|
Cite this article:
Lu Ke-Qing(卢克清), Li Ke-Hao(李可昊), Zhao Wei(赵卫), Zhang Yi-Qi(张贻齐), Zhang Mei-Zhi(张美志),Zhang Yu-Hong(张玉虹), Cheng Guang-Hua(程光华), and Zhang Yan-Peng(张彦鹏) Incoherently coupled soliton pairs in nonlocal nonlinear media 2010 Chin. Phys. B 19 024211
|
[1] |
Rotschild C, Cohen O, Manela O, Segev M and Carmon T 2005 Phys. Rev.Lett. 95 213904
|
[2] |
Conti C, Peccianti M and Assanto G 2003 Phys. Rev. Lett. 91 073901
|
[3] |
Litvak A G, Mironov V A, Fraiman G M and Yunakovskii A D1975 Sov. J. Plasma Phys. 1 31
|
[4] |
Mamaev A V, Zozulya A A, Mezentsev V K, Anderson D Z andSaffman M Phys. Rev. A 56 R1110
|
[5] |
Hou C F, Du C G, Abdurusul and Li S Q 2001 Chin. Phys. Lett. 18 1607
|
[6] |
She W L, Zheng X G, Ni X H and Guo H 2001 Chin. Phys. Lett. 18 1346
|
[7] |
Guo R, Ling Z F, Chen X H, Zhang G Q, Zhang X Z, Wen H D, Jiang Yand Liu S M 2000 Chin. Phys. Lett. 17 804
|
[8] |
Wang X S, Ouyang S G and She W L 2002 Acta Phys. Sin. 52377 (in Chinese)
|
|
[She W L 2005 Chin. Phys. 142514
|
[9] |
Hou C F, Yao F F, Zhou Z X, Pei Y B and Sun X D 2004 Chin. Phys. 1 3 1738
|
[10] |
Lu K Q, Zhao W, Yang Y L, Zhu X P, Li J P and Zhang Y P 2004 Chin. Phys. 1 32077
|
[10a] |
Lu K Q, Zhao W, Yang Y L, Zhang M Z, Li J P and Liu H J 2006 Chin. Phys. 15 403
|
[11] |
Lu K Q, Yang Y L, Zhao W, Zhang M Z, Yang Y, Zhang L, Liu X M andZhang Y P 2007 Chin. Phys. 16 3423
|
[11a] |
Zhang L, Lu K Q, Zhang MZ, Liu X M and Zhang Y P 2008 Chin. Phys. B 17 1674
|
[12] |
Zhang Y Q, Lu K Q, Zhang L, Zhang M Z and Li K H 2008 Acta Phys. Sin. 57 6354 (in Chinese)
|
[13] |
Lu K Q and Tang T T 1999 Acta Phys. Sin. 48 117 (in Chinese)
|
[14] |
Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
|
[15] |
Kr'olikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, J J Rasmussen and Edmundson D 2004 J. Opt. B: Quant. SemiclassicalOpt. 6 S288
|
[16] |
Lopez-Aguayo S, Desyatnikov A S and Kivshar Yu S 2006 Opt.Express 147903
|
[17] |
Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
|
[18] |
Rotschild C, Cohen O, Manela O, Segev M and Carmon T 2005 Phys. Rev. Lett. 95 213904
|
[19] |
Xu Z, Kartashov Y V and Torner L 2006 Phys. Rev. E 7 3 055601
|
[20] |
Kartashov Y V and Torner L 2007 Opt. Lett. 32 946
|
[21] |
Lin Y Y and Lee R K 2007 Opt. Express 15 8781
|
[22] |
Krolikowski W, Bang O, Rasmussen J J and Wyller J 2001 Phys. Rev. E 64 016612
|
[23] |
Christodoulides D N, Singh S R, Carvalho M I and Segev M 1996 Appl. Phys. Lett. 68 1763
|
[24] |
Krolikowski W and Bang O 2000 Phys. Rev. E 6 3 016610
|
[25] |
Grandpierre A G, Christodoulides D N, Coskun T H, Segev M and Kivshar Y S 2001 J. Opt. Soc. Am. B 1855
|
[26] |
Christodoulides D N and Joseph R I 1988 Opt. Lett. 1 3 53
|
[27] |
Kivshar Y S and Turitsyn S K 1993 Opt. Lett. 18 337
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|