Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127801    DOI: 10.1088/1674-1056/19/12/127801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced deep ultraviolet emission from Si-doped AlxGa1-xN/AlN MQWs

Li Da-Bing(黎大兵)a)b)†, Hu Wei-Guo(胡卫国) b), Miyake Hideto(三宅秀人)b), Hiramatsu Kazumasa(平松和政)b), and Song Hang(宋航) a)
a Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; b Department of Electrical and Electronic Engineering, Mie University, Tsu 514-8507, Japan
Abstract  Undoped and Si-doped AlGaN/AlN multiple quantum wells (MQWs) were grown on AlN/Sapphire templates by metalorganic phase vapor epitaxy. High-resolution x-ray diffraction measurements showed the high interface quality of the MQWs little affected by Si-doping. Room-temperature (RT) cathodoluminescence measurements demonstrated a significant enhancement of the RT deep ultraviolet emission at about 240 nm from the AlGaN/AlN MQWs by Si doping. The mechanism of the improved emission efficiency was that the Si-doping partially screens the internal electric field and thus leads to the increase of the overlap between electron and hole wavefunctions. Further theoretical simulation also supports the above results.
Keywords:  nitride      quantum wells      optical properties      luminescence  
Received:  27 January 2010      Revised:  19 February 2010      Accepted manuscript online: 
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  78.40.Fy (Semiconductors)  
  78.60.Hk (Cathodoluminescence, ionoluminescence)  
  78.67.De (Quantum wells)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60976011), the Knowledge Innovation Program of CIOMP (Grant No. 08CY32M080), the Akasaki Research Center at Nagoya University, Japan, the Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant Nos. 18360008 and 18560010), and the Scientific Research on Priority Areas of the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 18069006).

Cite this article: 

Li Da-Bing(黎大兵), Hu Wei-Guo(胡卫国), Miyake Hideto(三宅秀人), Hiramatsu Kazumasa(平松和政), and Song Hang(宋航) Enhanced deep ultraviolet emission from Si-doped AlxGa1-xN/AlN MQWs 2010 Chin. Phys. B 19 127801

[1] Khan M A 2006 Phys. Stat. Sol. A 203 1764
[2] Nakamura S and Fasol G 1997 The Blue Laser Diodes (New York: Springer)
[3] Zhang J P, Khan M Asif, Sun W H, Wang H M, Chen C Q, Fareed Q, Kuokstis E and Yang J W 2002 Appl. Phys. Lett. 81 4392
[4] Gaska R, Chen C, Yang J, Kuokstis E, Khan A, Tamulaitis G, Yilmaz I, Shur M S, Rojo J C and Schowalter L J 2002 Appl. Phys. Lett. 81 4658
[5] Borisov B, NiKishin S, Kuryatkov V and Temkin H 2005 Appl. Phys. Lett. 87 191902
[6] Tahtamouni T M Al, Nepal N, Lin J Y, Jiang H X and Chow W W 2006 Appl. Phys. Lett. 89 131922
[7] Tahtamouni T M Al, Sedhain A, Lin J Y and Jiang H X 2007 Appl. Phys. Lett. 90 221105
[8] Sun W H, Yang J W, Chen C Q, Zhang J P, Gaevski M E, Kuokstis E, Adivarahan V, Wang H M, Gong Z, Su M and Khan M Asif 2003 Appl. Phys. Lett. 83 2599
[9] Ryu M Y, Yu J, Shin E J, Yu P W, Lee J I, Yu S K, Oh E S, Nam O H, Sone C S, Park Y J and Kim T I 2000 Solid Sate Commun. 116 675
[10] Hirayama H and Aoyagi Y 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G3.74
[11] Martin G, Botchkarev A, Rockett A and Morkocc H 1996 Appl. Phys. Lett. 68 2541
[12] Städele M, Majewski J A, Vogl P and Görling A 1997 Phys. Rev. Lett. 79 2089
[13] Jogai B 2002 J. Appl. Phys. 91 3721
[14] Lee K S, Yoon D H, Bae S B, Park M R and Kim G H 2002 ETRI Journal 24 270
[15] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[16] Fiorentini V, Bernardini F, Sala F D, Carlo A I and Lugli P 1999 Phys. Rev. B 60 8849
[17] Carlo A D, Pescetelli S, Paciotti M, Lugli P and Graf M 1996 Solid State Commun. 98 803
[18] Carlo A Di 1998 in Tightbinding Approach to Conputational Materials Science ed. Turchi P E A, Gonis A and Colombo L 1998 MRS Symposium Proceedings 491 389
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[8] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[12] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[13] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!