Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 115202    DOI: 10.1088/1674-1056/19/11/115202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of core property on multi-electron process in slow collisions of isocharged sequence ions with neon

Lu Rong-Chun(卢荣春)a)b), Yu De-Yang(于得洋)a), Shao Cao-Jie(邵曹杰)a), Ruan Fang-Fang(阮芳芳)a), and Cai Xiao-Hong(蔡晓红)a)
a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; b Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  Influence of core property on multi-electron process in the collisions of q=6-9 and 11 isocharged sequence ions with Ne is investigated in the keV/u region. The cross-section ratios of double-, triple-, quadruple- and total multi-electron processes to the single electron capture process as well as the partial ratios of different reaction channels to the relevant multi-electron process are measured by using position-sensitive and time-of-flight techniques. The experimental data are compared with the theoretical predictions including the extended classical over-barrier model, the molecular Columbic barrier model and the semi-empirical scaling law. Results show a core effect on multi-electron process of isocharge ions colliding with Neon, which is consistent with the results of Helium we obtained previously.
Keywords:  isocharged sequence ions      multi-electron process      classical over-barrier model  
Received:  18 November 2009      Revised:  09 April 2010      Accepted manuscript online: 
PACS:  34.50.-s (Scattering of atoms and molecules)  
  34.70.+e (Charge transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874188 and 10775160).

Cite this article: 

Lu Rong-Chun(卢荣春), Yu De-Yang(于得洋), Shao Cao-Jie(邵曹杰), Ruan Fang-Fang(阮芳芳), and Cai Xiao-Hong(蔡晓红) Influence of core property on multi-electron process in slow collisions of isocharged sequence ions with neon 2010 Chin. Phys. B 19 115202

[1] Yu D Y, Cai X H, Lu R C, Ruan F F, Shao C J, Zhang H Q, Cui Y, Lu J, Xu X, Shao J X, Ding B W, Yang Z H, Chen X M and Liu Z Y 2007 Phys. Rev. A bf76 022710
[2] Drawin H W 1981 Phys. Scr. bf24 622
[3] Niehaus A 1986 J. Phys. B bf19 2925
[4] Herrmann R, Prior M H, D"orner R, Schmidt-B"ocking H, Lyneis C M and Wille U 1992 Phys. Rev. A bf46 5631
[5] Nagy L 1999 Nucl. Instr. Meth. B bf154 123
[6] Ruan F F, Cai X H, Yu D Y, Lu R C, Shao C J, Lu J, Cui Y, Shao J X, Xu X, Zhang H Q, Ding B W, Yang Z H and Chen X M 2006 Chin. Phys. Lett. bf23 95
[7] Ruan F F, Cai X H, Yu D Y, Lu R C, Shao C J, Lu J, Cui Y, Shao J X, Xu X, Zhang H Q, Ding B W, Yang Z H and Chen X M 2007 Chin. Phys. Lett. bf24 921
[8] Salmoun A, Br'edy R, Bernard J, Chen L and Martin S 2008 Euro. Phys. J. D bf47 55
[9] Arianer J and Geller R 1981 Annu. Rev. of Nucl. Part. Sci. bf31 19
[10] Janev R K and Presnyakov L P 1981 Phys. Rep. bf70 1
[11] Barat M and Roncin P 1992 J. Phys. B bf25 2205
[12] Cocke C L, DuBois R, Gray T J, Justiniano E and Can C 1981 Phys. Rev. Lett. bf46 1671
[13] M"uler A, Groh W and Salzborn E 1983 Phys. Rev. Lett. bf51 107
[14] B'ar'any A, Astner G, Cederquist H, Danared H, Huldt S, Hvelplund P, Johnson A, Knudsen H, Liljeby L and Rensfelt K G 1985 Nucl. Instr. Meth. B bf9 397
[15] Martin S, Denis A, Ouerdane Y, Salmoun A, EI Motassadeq A, D'esesquelles J, Druetta M, Church D and Lamy T 1990 Phys. Rev. Lett. bf64 2633
[16] Vaeck N and Hansen J E 1991 J. Phys. B bf24 L469
[17] van der Hart H W and Hansen J E 1993 J. Phys. B bf26 641
[18] Nakamura N, Currell F J, Danjo A, Kimura M, Matsumoto A, Ohtani S, Sakaue H A, Sakurai M, Tawara H, Watanabe H, Yamada I and Yoshino M 1995 J. Phys. B bf28 2959
[19] Sakaue H A, Tawara H, Yamada I, Hosaka K, Krok F, Currell F J, Nakamura N, Ohtani S, Watanabe H, Danjo A, Kimura M, Matsumoto A, Sakurai M and Yoshino M 1997 Phys. Scr. T73 182
[20] Knoop S, Turkstra J W, Morgenstern R, Olson R E and Hoekstra R 2003 Nucl. Instr. Meth. B 205 560
[21] Tawara H, Tak'acs E, Suta T, Mak'onyi K, Ratliff L P and Gillaspy J D 2006 Phys. Rev. A 73 012704
[22] Hoshino M, Kambara T, Kanai Y, Schuch R and Yamazaki Y 2007 Phys. Rev. A 75 032722
[23] Tan J, Lin C D and Kimura M 1987 J. Phys. B 20 L91
[24] Mann R and Schulte H 1987 Z. Phys. D 4 343
[25] Kimura M, Nakamura N, Watanabe H, Yamada I, Danjog A, Hosaka K, Matsumoto A, Ohtani S, Sakaue H A, Sakuai M, Tawara H and Yoshino M 1995 J. Phys. B 28 L643
[26] Chaudhuri C, Sanyal S and Rai Dastidar T K 1995 Phys. Rev. A 52 1137
[27] Selberg N, Biedermann C and Cederquist H 1997 Phys. Rev. A 56 4623
[28] Lugosi L and Sarkadi L 2003 Nucl. Instr. Meth. B 205 591
[29] Santos A C F and DuBois R D 2004 Phys. Rev. A 69 042709
[30] Chen L, Chen X and Liu Z 2008 Phys. Lett. A 372 681
[31] Bohr N and Lindhard J 1954 K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 7
[32] Tolstikhina I Y, Tolstikhin O I and Tawara H 1998 Phys. Rev. A 57 4387
[33] Ito H, Chihara Y, Suzuki Y, Hirayama T and Koizumi T 2007 J. Phys. Conf. Ser. 58 311
[34] Becker R L, Ford A L and Reading J F 1980 J. Phys. B 13 4059
[35] Beijers J P M, Hoekstra R, Schlatmann A R, Morgenstern R and de Heer F J 1992 J. Phys. B 25 463
[36] de Nijs G, Folkerts H O, Hoekstra R and Morgenstern R 1996 J. Phys. B 29 85
[37] Fl'echard X, Harel C, Jouin H, Pons B, Adoui L, Fr'emont F, Cassimi A and Hennecart D 2001 J. Phys. B 34 2759
[38] Bernard J, Br'edy R, Martin S, Chen L, D'esesquelles J and Buchet-Poulizac M C 2002 Phys. Rev. A 66 013209
[39] Cai X H, Yu D Y, Lu R C, Cao Z R, Yang W, Shao C J, Chen X M and Ma X W 2004 Nucl. Instr. Meth. B 225 185
[40] Cai X H, Yu D Y, Cao Z R, Lu R C, Yang W, Shao C J and Chen X M 2004 Chin. Phys. 13 1679
[41] Liljeby L, Astner G, B'ar'any A, Cederquist, Danared H, Huldt S, Hvelplund P, Johnson A, Knudsen H and Rensfelt K G 1986 J. Phys. B 33 310
[42] Justiniano E, Cocke C L, Gray T J, DuBois R D and Can C 1981 Phys. Rev. A 24 2953
[43] Sakaue H A, Danjo A, Hosaka K, Kato D, Kimura M, Matsumoto A, Nakamura N, Ohtani S, Sakurai M, Tawara H, Yamada I and Yoshino M 2004 J. Phys. B 37 403
[1] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[2] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[3] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[4] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[5] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[6] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[7] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[8] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[9] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[10] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[11] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[12] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[13] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[14] Novel potential energy surface-based quantum dynamics of ion-molecule reaction O++D2 →OD++D
Xian-Long Wang(王宪龙), Feng Gao(高峰), Shou-Bao Gao(高守宝), Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2018, 27(4): 043104.
[15] Selection rules for electric multipole transition of triatomic molecule in scattering experiments
Hong-Chun Tian(田红春), Long-Quan Xu(徐龙泉), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(4): 043101.
No Suggested Reading articles found!