Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 115203    DOI: 10.1088/1674-1056/19/11/115203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Nonlinear acoustic waves in a collisional self-gravitating dusty plasma

Guo Zhi-Rong(郭志荣)†ger, Yang Zeng-Qiang(杨增强), Yin Bao-Xiang(殷保祥), and Sun Mao-Zhu(孙茂珠)
Key Laboratory of Ecophysics and Department of Physics, Teachers College, Shihezi University, Shihezi 832003, China
Abstract  Using the reductive perturbation method, we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma. The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation, and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
Keywords:  nonlinear acoustic waves      collisional self-gravitating dusty plasma      modified Korteweg-de Vries equation      instability  
Received:  01 April 2009      Revised:  19 July 2010      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
Fund: Project supported by the Initial Research Fund of Shihezi University, China (Grant Nos. RCZX200742 and RCZX200743).

Cite this article: 

Guo Zhi-Rong(郭志荣), Yang Zeng-Qiang(杨增强), Yin Bao-Xiang(殷保祥), and Sun Mao-Zhu(孙茂珠) Nonlinear acoustic waves in a collisional self-gravitating dusty plasma 2010 Chin. Phys. B 19 115203

[1] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 543
[2] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[3] Barkan A, Merlino R L and D'Angelo N 1995 Phys. Plas-mas 2 2563
[4] Mor¯ll G E and Thomas H 1996 J. Vac. Sci. Technol. A 14 490
[5] Merlino R L, Barkan A, Thompson C and D'Angelo N 1990 Planet. Space Sci. 38 1143
[6] Chowdhury K Roy, Amar P Mishra and Chowdhury A Roy 2006 Chaos, Solitons and Fractals 29 125
[7] Singh S V and Rao N N 1997 Phys. Lett. A 235 164
[8] Shchekinov Y A 1997 Phys. Lett. A 225 117
[9] Ghosh S, Sarkar S, Khan M and Gupta M R 2000 Phys. Lett. A 274 162
[10] Ghosh S, Sarkar S, Khan M and Gupta M R 2000 Phys. Lett. A 275 109
[11] Duan Wen Shan 2002 Chaos, Solitons and Fractals 14 503
[12] Mamun A A, Eliasson B and Shukla P K 2004 Phys. Lett. A 332 412
[13] Waleed M Moslem 2006 Phys. Lett. A 351 290
[14] Vladimirov S V, Ostrikov K N and Yu M Y 1999 Phys. Rev. E 60 3257
[15] Ostrikov K N, Yu M Y, Vladimirov S V and Ishihara O 1999 Phys. Plasmas 6 737
[16] Wang X, Bhattacharjee A, Gou S K and Goree J 2001 Phys. Plasmas 8 5018
[17] D'angelo N 2002 Phys. Lett. A 304 102
[18] Paul S N, Roychowdhury K, Burman S and Roychowd-hury A 2006 Czech. J. Phys. 56 1453
[19] Duan W S and Zhao J B 1999 Phys. Plasmas 6 3484
[20] Hiroaki Ono 1972 J. Phys. Soc. Jpn. 32 332
[21] Hiroaki Ono 1974 J. Phys. Soc. Jpn. 37 882
[22] Hiroaki Ono 1992 J. Phys. Soc. Jpn. 61 4336
[23] Miki Wadati 1990 J. Phys. Soc. Jpn. 59 4201
[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[5] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[6] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[7] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[8] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[9] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[10] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[11] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
[12] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[13] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[14] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[15] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
No Suggested Reading articles found!