Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110311    DOI: 10.1088/1674-1056/19/11/110311
GENERAL Prev   Next  

Scheme for teleportation of unknown single qubit state via continuous variables entangling channel

Wang Zhong-Jie(王中结), Zhang Kan(张侃), and Fan Chao-Yang(范朝阳)
Department of Physics, Anhui Normal University, Wuhu 241000, China
Abstract  A new scheme for quantum teleportation of single quantum bit state with using continuous variables entangling channel is presented. In our scheme two entangled light fields are employed. An outstanding characteristic of this scheme is that one atomic state is transmitted directly to another atom without using the third atom as the mediate.
Keywords:  teleportation      entanglement state      quantum measurement  
Received:  13 April 2010      Revised:  18 May 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 090412060), and the Natural Science Foundation of the Education Committee of Anhui Province, China (Grant No. KJ2008A029).

Cite this article: 

Wang Zhong-Jie(王中结), Zhang Kan(张侃), and Fan Chao-Yang(范朝阳) Scheme for teleportation of unknown single qubit state via continuous variables entangling channel 2010 Chin. Phys. B 19 110311

[1] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature (London) 390 575
[2] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] .Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[4] Yang C P and Guo G C 1999 Chin. Phys. Lett. 16 628
[5] Lee H W Phys. Rev. 2001 A 64 014302
[6] Browne D E, Plenio M B and Huelga S F 2003 Phys. Rev. Lett. 91 067901
[7] Rigolin G 2005 Phys. Rev. A 71 032303
[8] Liu J M and Guo G C 2002 Chin. Phys. Lett. 19 456
[9] Zheng S B 2004 Phys. Rev. A 69 064302
[10] Bose S, Knight P L, Plenio M B and Vedral V 1999 Phys. Rev. Lett. 83 5158
[11] Tiegang D, Muthukrishnan A, Scully M O and Zubairy M S 2005 Phys. Rev. A 71 062308
[12] Chen Q and Fang X M 2008 Chin. Phys. B 17 1587
[13] Zhan Y B 2004 Chin. Phys. B 13 1801
[14] Gilad Gour 2004 Phys. Rev. A 70 042301
[15] Satyabrata Adhikari, Majumdar A S and Nayak N 2008 Phys. Rev. A 77 012337
[16] Marian P and Marian T A 2006 Phys. Rev. A 74 042306
[17] Adesso G and Illuminati F 2005 Phys. Rev. Lett. 95 150503
[18] Dell'Anno F, Siena S D, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301
[19] "Ozdemir S K, Barkiewicz K, Liu Y X and Miranowicz A 2007 Phys. Rev. A 76 042325
[20] Nielsen M A, Knill E and Laflamme R 1998 Nature (London) 396 52
[21] Riebe M, H"affner H, Roos C F, H"ansel W, Benhelm J, Lancaster G P T, K"orber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R 2004 Nature (London) 429 734
[22] Gerry G C 1996 Phys. Rev. A 54 R2529
[23] de Oliveira M C and Miburn G J 2002 Phys. Rev. A 65 032304 endfootnotesize
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[4] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[5] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[6] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[7] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[8] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[9] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[10] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[11] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[12] Measurement-device-independent quantum dialogue
Guo-Fang Shi(石国芳). Chin. Phys. B, 2021, 30(10): 100303.
[13] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[14] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[15] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
No Suggested Reading articles found!