Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060301    DOI: 10.1088/1674-1056/ab84de
GENERAL   Next  

Quantum teleportation of particles in an environment

Lu Yang(杨璐)1,2, Yu-Chen Liu(刘雨辰)3, Yan-Song Li(李岩松)1,2
1 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
2 Frontiers Science Center of Quantum Information, Beijing 100084, China;
3 School of Physics, Jilin University, Changchun 130012, China
Abstract  We discuss the teleportation of particles in an environment of an N-body system. In this case, we can change a many-body system into an arbitrary shape in space by teleporting some or all the constituent particles, and thus we call the quantum teleportation under this circumstance as quantum tele-transformation (QTT). The particular feature of QTT is that the wave function of the internal degrees of freedom remains the same, while the spatial wave function experiences a drastic change. The notion of QTT provides conceptual and pedagogical convenience for quantum information processing. In view of QTT, teleportation is the change of a single particle in space, while entanglement swapping is the change of one particle of an entangled pair.
Keywords:  quantum tele-transformation      teleportation      entanglement swapping  
Received:  21 March 2020      Revised:  23 March 2020      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the Key R&D Program of Guangdong Province, China (Grant No. 2018B030325002), and the National Natural Science Foundation of China (Grant Nos. 61727801, 61871257, and 11774197).
Corresponding Authors:  Yan-Song Li     E-mail:

Cite this article: 

Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松) Quantum teleportation of particles in an environment 2020 Chin. Phys. B 29 060301

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302
[3] Tan Y G, Hu Y H and Yang H F 2016 Chin. Phys. Lett. 33 030302
[4] Zhang S L, Wang K, Guo J S and Shi J H 2015 Chin. Phys. Lett. 32 070302
[5] Mazhar A 2015 Chin. Phys. Lett. 32 060302
[6] Feng Y Y, Shi R H, S J J and Guo Y 2019 Acta Phys. Sin. 68 120302 (in Chinese)
[7] Ren Z H, Li Y, Li Y N and Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)
[8] Yu W R and Ji X 2019 Acta Phys. Sin. 68 030302 (in Chinese)
[9] Wang S Z, Wen Y F, Zhang C R, Wang D X, Xu Z X, Li S J and Wang K 2019 Acta Phys. Sin. 68 020301 (in Chinese)
[10] Jia F, Zhang K Z, Hu Y Q, Zhang H L, Hu L Y and Fan H Y 2018 Acta Phys. Sin. 67 150301 (in Chinese)
[11] Liu K T, Liu F, Shan C J and Liu J B 2019 Chin. Phys. B 28 090304
[12] Zhang M, Zhou L, Zhong W and Sheng Y B 2019 Chin. Phys. B 28 010301
[13] Qurban M, Tahira R, Ge G Q and Ikram M 2019 Chin. Phys. B 28 030304
[14] Liu L, Gao T and Yan F L 2018 Chin. Phys. B 27 020306
[15] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[16] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[17] Wang T J, Song S Y and Long G L 2012 Phys. Rev. A 85 062311
[18] Chen L Q, Sheng Y B and Zhou L 2019 Chin. Phys. B 28 010302
[19] Lu L C, Wang G Y, Ren B C, Zhang M and Deng F G 2020 Chin. Phys. B 29 010305
[20] Zhou Z R, Sheng Y B, Niu P H, Yin L G and Long G L 2020 Sci. Chin. Phys. Mech. Astron. 63 230362
[21] Hao P, Zhou Z R, Lin Z S, Sheng Y B, Yin L G and Long G L 2018 Sci. Bull. 63 1345
[22] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[23] Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. Chin. Phys. Mech. Astron. 61 90312
[24] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. Chin. Phys. Mech. Astron. 62 110311
[25] Ekert A K 1991 Phys. Rev. Lett. 67 661
[26] Yang L, Ma H Y, Zheng C, Ding X L, Gao J C and Long G L 2017 Acta Phys. Sin. 66 230303 (in Chinese)
[27] Ma H Y, Qin G Q, Fan X K and Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese)
[28] Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F and Guo G C 2019 Quantum. Eng. 1 e13
[29] Sheng Y B 2019 Quantum. Eng. 1 e22
[30] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[31] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2009 Nature 518 516
[32] Zhou L and Sheng Y B 2015 Phys. Rev. A 92 042314
[33] Sheng Y B and Zhou L 2015 Sci. Rep. 5 13453
[34] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
[35] Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
[36] Hu X M, Zhang C, Liu B H, Huang Y F, Li C F and Guo G C 2019 arXiv:1904.12249[quant-ph]
[37] Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
[38] Wan Y, Kienzler D, Erickson S D, Mayer K H, Tan T R, Wu J J, Vasconcelos H M, Glancy S, Knill E, Wineland D J, Wilson A C and Leibfried D 2019 Science 364 875
[39] Chou K S, Blumoff J Z, Wang C S, Reinhold P C, Axline C J, Gao Y Y, Frunzio L, Devoret M H, Jiang L and Schoelkopf R J 2018 Nature 561 368
[40] Zheng Y D, Mao Z and Zhou B 2019 Chin. Phys. B 28 120307
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[10] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[11] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[14] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[15] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
No Suggested Reading articles found!