|
|
Quantum teleportation of particles in an environment |
Lu Yang(杨璐)1,2, Yu-Chen Liu(刘雨辰)3, Yan-Song Li(李岩松)1,2 |
1 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; 2 Frontiers Science Center of Quantum Information, Beijing 100084, China; 3 School of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract We discuss the teleportation of particles in an environment of an N-body system. In this case, we can change a many-body system into an arbitrary shape in space by teleporting some or all the constituent particles, and thus we call the quantum teleportation under this circumstance as quantum tele-transformation (QTT). The particular feature of QTT is that the wave function of the internal degrees of freedom remains the same, while the spatial wave function experiences a drastic change. The notion of QTT provides conceptual and pedagogical convenience for quantum information processing. In view of QTT, teleportation is the change of a single particle in space, while entanglement swapping is the change of one particle of an entangled pair.
|
Received: 21 March 2020
Revised: 23 March 2020
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303700), the Key R&D Program of Guangdong Province, China (Grant No. 2018B030325002), and the National Natural Science Foundation of China (Grant Nos. 61727801, 61871257, and 11774197). |
Corresponding Authors:
Yan-Song Li
E-mail: ysli@tsinghua.edu.cn
|
Cite this article:
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松) Quantum teleportation of particles in an environment 2020 Chin. Phys. B 29 060301
|
[1] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[2] |
Zhu W T, Ren Q B, Duan L W and Chen Q H 2016 Chin. Phys. Lett. 33 050302
|
[3] |
Tan Y G, Hu Y H and Yang H F 2016 Chin. Phys. Lett. 33 030302
|
[4] |
Zhang S L, Wang K, Guo J S and Shi J H 2015 Chin. Phys. Lett. 32 070302
|
[5] |
Mazhar A 2015 Chin. Phys. Lett. 32 060302
|
[6] |
Feng Y Y, Shi R H, S J J and Guo Y 2019 Acta Phys. Sin. 68 120302 (in Chinese)
|
[7] |
Ren Z H, Li Y, Li Y N and Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)
|
[8] |
Yu W R and Ji X 2019 Acta Phys. Sin. 68 030302 (in Chinese)
|
[9] |
Wang S Z, Wen Y F, Zhang C R, Wang D X, Xu Z X, Li S J and Wang K 2019 Acta Phys. Sin. 68 020301 (in Chinese)
|
[10] |
Jia F, Zhang K Z, Hu Y Q, Zhang H L, Hu L Y and Fan H Y 2018 Acta Phys. Sin. 67 150301 (in Chinese)
|
[11] |
Liu K T, Liu F, Shan C J and Liu J B 2019 Chin. Phys. B 28 090304
|
[12] |
Zhang M, Zhou L, Zhong W and Sheng Y B 2019 Chin. Phys. B 28 010301
|
[13] |
Qurban M, Tahira R, Ge G Q and Ikram M 2019 Chin. Phys. B 28 030304
|
[14] |
Liu L, Gao T and Yan F L 2018 Chin. Phys. B 27 020306
|
[15] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[16] |
Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[17] |
Wang T J, Song S Y and Long G L 2012 Phys. Rev. A 85 062311
|
[18] |
Chen L Q, Sheng Y B and Zhou L 2019 Chin. Phys. B 28 010302
|
[19] |
Lu L C, Wang G Y, Ren B C, Zhang M and Deng F G 2020 Chin. Phys. B 29 010305
|
[20] |
Zhou Z R, Sheng Y B, Niu P H, Yin L G and Long G L 2020 Sci. Chin. Phys. Mech. Astron. 63 230362
|
[21] |
Hao P, Zhou Z R, Lin Z S, Sheng Y B, Yin L G and Long G L 2018 Sci. Bull. 63 1345
|
[22] |
Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
|
[23] |
Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. Chin. Phys. Mech. Astron. 61 90312
|
[24] |
Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. Chin. Phys. Mech. Astron. 62 110311
|
[25] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[26] |
Yang L, Ma H Y, Zheng C, Ding X L, Gao J C and Long G L 2017 Acta Phys. Sin. 66 230303 (in Chinese)
|
[27] |
Ma H Y, Qin G Q, Fan X K and Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese)
|
[28] |
Hu X M, Zhang C, Zhang C J, Liu B H, Huang Y F, Han Y J, Li C F and Guo G C 2019 Quantum. Eng. 1 e13
|
[29] |
Sheng Y B 2019 Quantum. Eng. 1 e22
|
[30] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[31] |
Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2009 Nature 518 516
|
[32] |
Zhou L and Sheng Y B 2015 Phys. Rev. A 92 042314
|
[33] |
Sheng Y B and Zhou L 2015 Sci. Rep. 5 13453
|
[34] |
Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
|
[35] |
Luo Y H, Zhong H S, Erhard M, Wang X L, Peng L C, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A and Pan J W 2019 Phys. Rev. Lett. 123 070505
|
[36] |
Hu X M, Zhang C, Liu B H, Huang Y F, Li C F and Guo G C 2019 arXiv:1904.12249[quant-ph]
|
[37] |
Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
|
[38] |
Wan Y, Kienzler D, Erickson S D, Mayer K H, Tan T R, Wu J J, Vasconcelos H M, Glancy S, Knill E, Wineland D J, Wilson A C and Leibfried D 2019 Science 364 875
|
[39] |
Chou K S, Blumoff J Z, Wang C S, Reinhold P C, Axline C J, Gao Y Y, Frunzio L, Devoret M H, Jiang L and Schoelkopf R J 2018 Nature 561 368
|
[40] |
Zheng Y D, Mao Z and Zhou B 2019 Chin. Phys. B 28 120307
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|