Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100303    DOI: 10.1088/1674-1056/ac140a
GENERAL Prev   Next  

Measurement-device-independent quantum dialogue

Guo-Fang Shi(石国芳)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061, China
Abstract  Recently, measurement-device-independent quantum secure direct communication schemes were proposed by Niu et al. [Sci. Bull. 63 1345 (2018)] and Zhou et al. [Sci. China-Phys. Mech. Astron. 63 230362 (2020)]. Inspired by their ideas, in this paper, a measurement-device-independent quantum dialogue protocol based on entanglement is designed and proven to be secure. The advantage of this scheme is that it can not only allow two communicators to transmit secret messages between each other, making the application scenarios more extensive, but can also eliminate all the security loopholes related to the measurement device and information leakage. In terms of experimental implementation, the scheme mainly involves the preparation of entangled states, the preparation of single photons, quantum storage, Bell measurement and other technologies, all of which are mature at present, therefore, the scheme is feasible by using current technologies.
Keywords:  quantum dialogue      entanglement state      Bell measurement  
Received:  23 April 2021      Revised:  20 June 2021      Accepted manuscript online:  14 July 2021
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
Corresponding Authors:  Guo-Fang Shi     E-mail:  55310518@qq.com

Cite this article: 

Guo-Fang Shi(石国芳) Measurement-device-independent quantum dialogue 2021 Chin. Phys. B 30 100303

[1] Bennett C H and Brassard G 1984 Proc. Int. Conf. on Computers, Systems & Signal Processing, Bangalore, India, IEEE, New York p. 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
[5] Xu F H, Qi B and Lo H K 2010 New J. Phys. 12 113026
[6] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333
[7] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686
[8] Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G and Genovese M 2017 Light. Sci. Appl. 6 e16261
[9] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[10] Sun S H, Gao M, Li C Y and Liang L M 2013 Phys.Rev. A. 87 052329
[11] Xu F H, Curty M, Qi B and Lo H K 2013 New. Jour. Phys. 15 113007
[12] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China-Phys. Mech. Astron. 62 110311
[13] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[14] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[15] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[16] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[17] Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China-Phys. Mech. Astron. 61 090312
[18] Li T and Long G L 2020 New J. Phys. 22 063017
[19] Liu D, Chen J L and Jiang W 2012 Int. J. Theor. Phys. 51 2923
[20] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[21] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[22] Nguyen B A 2004 Phys. Lett. A 328 6
[23] Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Sci. China Ser. G Phys. Mech. Astron. 51 559
[24] Tan Y G and Cai Q Y 2008 Int. J. Quant. Inf. 6 325
[25] Shi G F, Xi X Q, Tian X L and Yue R H 2009 Opt. Commun. 282 2460
[26] Shi G F, Xi X Q, Hu M L and Yue R H 2010 Opt. Commun. 283 1984
[27] Arpita M 2017 Quantum. Inf. Process. 16 305
[28] Niu P H, Zhou Z R, Lin Z S, Sheng Y B, Liu G Y and Long G L 2018 Sci. Bull. 63 1345
[29] Zhou Z R, Sheng Y B, Niu P H, Liu G Y, Long G L and Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362
[30] Li T, Miranowicz A, Hu X D, Xia K Y and Nori F 2018 Phys. Rev. A. 97 062318
[31] Song G Z, Munro E, Nie W, Kwek L C, Deng F G and Long G L 2018 Phys. Rev. A 98 023814
[32] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601
[33] Cabello A 2000 Phys. Rev. Lett. 85 5635
[34] Zhang W, Ding D S, ShengY B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[35] Zhu F, Zhang W, Sheng Y B and Huang Y 2017 Sci. Bull. 62 1519
[36] Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Abulizi M, Li C L, Zhang W J, Sun Q C, Liu W Y, Jiang X, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z and Pan J W 2020 Phys. Rev. Lett. 125 260503
[1] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[2] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[3] Generation of multiparticle three-dimensional entanglement state via adiabatic passage
Wu Xi (吴熙), Chen Zhi-Hua (陈志华), Ye Ming-Yong (叶明勇), Chen Yue-Hua (陈悦华), Lin Xiu-Min (林秀敏). Chin. Phys. B, 2013, 22(4): 040309.
[4] Eavesdropping on the quantum dialogue protocol in lossy channel
Liu Heng(刘恒), Zhang Xiu-Lan(张秀兰), and Lü Hui(吕辉) . Chin. Phys. B, 2011, 20(7): 070305.
[5] Scheme for teleportation of unknown single qubit state via continuous variables entangling channel
Wang Zhong-Jie(王中结), Zhang Kan(张侃), and Fan Chao-Yang(范朝阳). Chin. Phys. B, 2010, 19(11): 110311.
[6] Participant attack on quantum secret sharing based on entanglement swapping
Song Ting-Ting(宋婷婷), Zhang Jie(张劼), Gao Fei(高飞), Wen Qiao-Yan(温巧燕), and Zhu Fu-Chen(朱甫臣). Chin. Phys. B, 2009, 18(4): 1333-1337.
[7] Entanglement between two atoms in the system of Schrödinger cat state interacting with two entangled atoms
Liu Tang-Kun(刘堂昆). Chin. Phys. B, 2007, 16(11): 3396-3401.
[8] Secure quantum dialogue based on single-photon
Ji Xin (计新), Zhang Shou (张寿). Chin. Phys. B, 2006, 15(7): 1418-1420.
No Suggested Reading articles found!