Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107101    DOI: 10.1088/1674-1056/19/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modeling of 4H–SiC multi-floating-junction Schottky barrier diode

Pu Hong-Bin(蒲红斌), Cao Lin(曹琳), Chen Zhi-Ming(陈治明), Ren Jie(仁杰), and Nan Ya-Gong(南雅公)
Department of Electronic Engineering, Xi'an University of Technology, Xi'an 710048, China
Abstract  This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H–SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 m$\Omega$·cm2 and breakdown voltage increases 422 V with an additional floating junction for the given structure.
Keywords:  silicon carbide      multi floating junction      Schottky barrier diode  
Received:  28 October 2009      Revised:  19 January 2010      Accepted manuscript online: 
PACS:  61.72.S- (Impurities in crystals)  
  73.21.Ac (Multilayers)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.30.Kk (Junction diodes)  
Fund: Project supported by the Open Fund of Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Ministry of Education of China.

Cite this article: 

Pu Hong-Bin(蒲红斌), Cao Lin(曹琳), Chen Zhi-Ming(陈治明), Ren Jie(仁杰), and Nan Ya-Gong(南雅公) Modeling of 4H–SiC multi-floating-junction Schottky barrier diode 2010 Chin. Phys. B 19 107101

[1] Deboy G, Marz M, Stengl J P, Strack H, Tihanyi J and Weber H 1998 Proc. IEDM 98 San Francisco, California, December, 1998 p. 683
[2] Napoli E and Strollo A G M 2001 Proceedings of International Symposium on Power Semiconductor Devices and ICs, Osaka, Japan, June 4--7, 2001 p. 339
[3] Chow T P, Zhu L and Losee P 2004 International Journal of High Speed Electronics and Systems 14 865
[4] Sheng K and Yu L C 2008 IEEE Trans. Electron Device 55 1961
[5] Adachi K, Johnson C M, Ohashi H, Shinohe T, Kinoshita T and Arai K 2001 Mater. Sci. Forum. 353 719
[6] Tian B, Chen X and Kang B W 2006 Microelectronics 36 1 (in Chinese)
[7] Cezac N, Morancho F and Rossel P 2000 The 12th International Symposium on Power Semiconductor Devices and Ics Toulouse, France, May 22--25, 2000 p. 69
[8] Chen X B, Wang X and Sin J K 2000 IEEE Trans. Electron Devices 47 1280
[9] Pu H B, Cao L, Chen Z M and Ren J 2009 J. Semicond. 30 40001
[10] Ikeda M, Matsunami H and Tanaka T 1980 Phys. Rev. B 22 2842
[11] Palo A 1998 MEDICI Two-Dimensional Device Simulation Programmer User Manual (1st edn.) (Fremont: Avant) p. 1
[12] Roschke M and Schwierz F 2001 IEEE Trans. Electron Devices 48 1442
[13] Wataru S and Ichiro O 2004 IEEE Trans. Electron Device 51 797 endfootnotesize
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[6] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[7] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[8] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[9] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[10] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[11] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[12] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[13] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[14] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[15] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
No Suggested Reading articles found!