Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 106803    DOI: 10.1088/1674-1056/19/10/106803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Deposition pressure effect on the surface roughness scaling of microcrystalline silicon films

Zhu Zhi-Li(朱志立), Ding Yan-Li(丁艳丽), Wang Zhi-Yong(王志永), Gu Jin-Hua(谷锦华), and Lu Jing-Xiao(卢景霄)
School of Physical Engineering and Material Physics Laboratory, Zhengzhou University, Zhengzhou 450052, China
Abstract  The scaling behaviour of surface roughness evolution of microcrystalline silicon (μc-Si:H) films prepared by very-high frequency plasma-enhanced chemical vapour deposition (VHF-PECVD) has been investigated by using a spectroscopic ellipsometry (SE) technique. The growth exponent β was analysed for the films deposited under different pressures Pg. The results suggest that films deposited at Pg = 70 Pa have a growth exponent β about 0.22, which corresponds to the definite diffusion growth. However, abnormal scaling behaviour occurs in the films deposited at Pg = 300 Pa. The exponent β is about 0.81 that is much larger than 0.5 of zero diffusion limit in the scaling theory. The growth mode of μ c-Si:H deposited at Pg= 300 Pa is clearly different from that of μc-Si:H at Pg = 70 Pa. Monte Carlo simulations indicate that the sticking process and the surface diffusion of the radicals are two key factors to affect the growth mode under different pressures. Under Pg= 300 Pa, β>0.5 is correlated with the strong shadowing effect resulting from the larger sticking coefficient.
Keywords:  microcrystalline Si thin film      spectroscopic ellipsometry      the growth exponent      Monte Carlo simulations  
Received:  27 September 2009      Revised:  19 April 2010      Accepted manuscript online: 
PACS:  52.77.Dq (Plasma-based ion implantation and deposition)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  68.35.Fx (Diffusion; interface formation)  
  68.55.-a (Thin film structure and morphology)  
  78.30.Am (Elemental semiconductors and insulators)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2006CB202601) and the Natural Science Foundation of Henan Province of China (Grant No. 82300443203).

Cite this article: 

Zhu Zhi-Li(朱志立), Ding Yan-Li(丁艳丽), Wang Zhi-Yong(王志永), Gu Jin-Hua(谷锦华), and Lu Jing-Xiao(卢景霄) Deposition pressure effect on the surface roughness scaling of microcrystalline silicon films 2010 Chin. Phys. B 19 106803

[1] Yan B J, Yue G Z, Banerjee A, Yang J and Guha S 2004 wxMater. Res. Soc. Symp. Proc.808 A bf9 41
[2] Meier J, Dubail S, Fliickiger R, Fischer D, Keppner H and Shah A 1994 1994 wxIEEE First WCPEC Hawaii
[3] Hou G F, Xue J M, Sun J, Guo Q C, Zhang D K, Ren H Z, Zhao Y, Geng X H and Li Y G 2007 wxActa Phys. Sin.56 1177 (in Chinese)
[4] Guo X J, Lu J X, Cheng Y S, Zhang Q F, Wen S T, Zheng W, Shen D H and Cheng Q D 2008 wxActa Phys. Sin.57 6002 (in Chinese)
[5] Sobajima Y, Nakanoa S, Nishinoa M, Tanakaa Y, Toyamaa T and Okamoto H 2008 wxJ. Non-Cryst. Solids354 2407
[6] Niikura C, Kondo M and Matsuda A 2004 wxProceedings of the 19th European Photovoltaic Solar Energy Conference Paris, France, p. 1637
[7] Mai Y, Klein S, Carius R, Stiebig H, Geng X and Finger F 2005wx Appl. Phys. Lett.87 073503
[8] Mai Y, Klein S, Geng X and Finger F 2004 wxAppl. Phys. Lett.85 2839
[9] Rezek B, Stuchl'hik J, Fejfar A and Ko"cka J 2002 wxJ. Appl. Phys.92 587
[10] Zhao Y P, Drotar J T, Wang G C and Lu T M 2001 wxPhys. Rev. Lett.87 136102
[11] Karabacak T, Zhao Y P, Wang G C and Lu T M 2001 wxPhys. Rev. B64 085323
[12] Karder M, Parisi G and Zhang Y 1986 wxPhys. Rev. Lett.56 889
[13] Fujiwara H, Kondo M and Matsuda A 2001 wxPhys. Rev. B63 115306
[14] Teplin C W, Levi D H, Lwaniczko E, John K M, Perkins J D and Branz H M 2005 wxJ. Appl. Phys.97 103536
[15] Hamers E A G, Morral A F I and Niikura C 2000 wxJ. Appl. Phys.88 3674
[1] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[4] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[5] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[6] Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors
Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔). Chin. Phys. B, 2019, 28(6): 067801.
[7] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[8] Study on electrical defects level in single layer two-dimensional Ta2O5
Dahai Li(李大海), Xiongfei Song(宋雄飞), Linfeng Hu(胡林峰), Ziyi Wang(王子仪), Rongjun Zhang(张荣君), Liangyao Chen(陈良尧), David Wei Zhang(张卫), Peng Zhou(周鹏). Chin. Phys. B, 2016, 25(4): 047304.
[9] Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study
R Masrour, A Jabar. Chin. Phys. B, 2016, 25(10): 107502.
[10] Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations
Fu-Zhen Zhang(张付珍), Hong-Tao Xue(薛红涛), Fu-Ling Tang(汤富领), Xiao-Kang Li(李小康), Wen-Jiang Lu(路文江), Yu-Dong Feng(冯煜东). Chin. Phys. B, 2016, 25(1): 013103.
[11] Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap
Sun Hui (孙慧), Wang Zhen-Xia (王振霞), Wang Qin (王琴), Li Xing-Jia (李兴佳), Liu Jian-Ping (刘建平), Yin Jian-Ping (印建平). Chin. Phys. B, 2015, 24(11): 113101.
[12] Optical properties of aluminum-doped zinc oxide films deposited by direct-current pulse magnetron reactive sputtering
Gao Xiao-Yong (郜小勇), Chen Chao (陈超), Zhang Sa (张飒). Chin. Phys. B, 2014, 23(3): 030701.
[13] Kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands
Song Xin (宋鑫), Feng Hao (冯昊), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Yin Hao-Zhi (尹昊智). Chin. Phys. B, 2014, 23(1): 016802.
[14] Totally asymmetric exclusion processes at constrained m-input n-output junction points
Li Shao-Da (李少达), Liu Ming-Zhe (刘明哲), Pei Xiang-Jun (裴向军). Chin. Phys. B, 2013, 22(6): 060512.
[15] Monte Carlo study of nanowire magnetic properties
R. Masrour, L. Bahmad, A. Benyoussef. Chin. Phys. B, 2013, 22(5): 057504.
No Suggested Reading articles found!