Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110309    DOI: 10.1088/1674-1056/19/11/110309
GENERAL Prev   Next  

Two quantum oscillators coupled with a planar radio frequency ion trap

Chen Liang(陈亮)a)b)c)†ger and Gao Ke-Lin(高克林)a)b)
a State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
Abstract  In this scheme, two quantum oscillators in a planar radio frequency ion trap are coupled by the trap electrodes. The ions motional states encode the quantum bits (qubits), and a swap gate could be achieved. Under different conditions of the experiments, the intensity of the coupling between two quantum oscillators and the dissipation of the system are calculated. We compute fidelities for a quantum swap gate and discuss experimental issues.
Keywords:  planar radio frequency ion trap      quantum oscillator      swap gate  
Received:  12 May 2010      Revised:  27 May 2010      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant No. 2005CB724500), the National Natural Science Foundation of China (Grant Nos. 60490280 and 10874205).

Cite this article: 

Chen Liang(陈亮) and Gao Ke-Lin(高克林) Two quantum oscillators coupled with a planar radio frequency ion trap 2010 Chin. Phys. B 19 110309

[1] Nagerl H C, Leibfried D, Schmidt-Kaler F, Eschner J and Blatt R 1998 Opt. Express 3 89
[2] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature 404 256
[3] Rowe M A, Ben-Kish A, Demarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2002 Quantum Inf. Comput. 2 257
[4] Wineland D J, Monroe C, Meekhof D M, King B E, Leibfried D, Itano W M, Bergquist J C, Berkeland D, Bollinger J J and Miller J 1998 Adv. Quant. Chem. 30 41
[5] H"affner H, H"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K"orber T, Rapol U D, Riebe M, Schmidt P O, Becher C, G"uhne O, D"ur W and Blatt R 2005 Nature 438 643
[6] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[7] Cirac J I and Zoller P 2000 Nature 404 579
[8] Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N and Wineland D J 2006 Phys. Rev. Lett. 96 253003
[9] Kielpinski D, Meyer V, Rowe M A, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Science 291 1013
[10] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Wineland D J 2003 Nature 422 412
[11] Schmidt-Kaler F, Haffner H, Riebe M, Gulde S, Lancaster G P T, Deuschle T, Becher C, Roos C F, Eschner J and Blatt R 2003 Nature 422 408
[12] Jost J D, Home J P, Amini J M, Hanneke D, Ozeri R, Langer C, Bollinger J J, Leibfried D and Wineland D J 2009 Nature 459 683
[13] Leibfried D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature 438 639
[14] Riebe M, H"affner H, Roos C F, H"ansel W, Benhelm1 J, Lancaster G P T, K"orber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R 2004 Nature 429 734
[15] Barrett M D, Chiaverini J, Schaetz T, Britton1 J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R and Wineland D J 2004 Nature 429 737
[16] Chiaverini J, Leibfried D, Schaetz T, Barrett M D, Blakestad R B, Britton J, Itano W M, Jost J D, Knill E, Langer C, Ozeri R and Wineland D J 2004 Nature 432 602
[17] Dung H T, Knoll L and Welsch D G 2002 Phys. Rev. A 66 063810
[18] Stahl S, Galve F, Alonso J, Djekic S, Quint W, Valenzuela T, Verd'u J, Vogel M and Werth G 2005 Eur. Phy. J. D 32 139
[19] Jorge R, Zurita-S=anchez and Carsten Henkel 2008 New J. Phys. 10 083021
[20] Daniilidis N, Lee T, Clark R, Narayanan S and Haffner H 2009 J. Phys. B 42 154012
[21] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Mayer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[22] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[23] Tian L, Rabl P, Blatt R and Zoller P 2004 Phys. Rev. Lett. 92 247902
[24] Sillanpaa M A, Park J I and Simmonds R W 2007 Nature 449 438
[25] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[26] Cirac J I, Blatt R and Zoller P 1994 Phys. Rev. A 49 3174
[27] Jorge R. Zurita-Sacuteanchez and Henkel C 2006 Phys. Rev. A 73 063825
[28] Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Dleibfried, Ozeri R and Wineland D J 2005 Quantum Inf. Comput. 5 419
[29] Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2006 Phys. Rev. A 73 032307
[30] Soensen A S, van der Wal C H, Childress L I and Lukin M D 2004 Phys. Rev. Lett. 92 063601
[31] Jiang C L, Fang M F and Hu Y H 2008 Chin. Phys. B 17 190
[32] Lide D R 2002 Handbook of Chemistry and Physics (Boca Raton, FL: CRC Press)
[33] Labaziewicz J, Ge Y F, Antohi P, Leibrandt D, Brown K R and Chuang I L 2008 Phys. Rev. Lett. 100 013001
[34] House M G 2008 Phys. Rev. A 78 033402 endfootnotesize
[1] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[2] Quantum state swap for two trapped Rydberg atoms
Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标) . Chin. Phys. B, 2012, 21(4): 040305.
[3] Deterministic implementations of fermionic quantum SWAP and Fredkin gates for spin qubits based on charge detection
Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Zhu Ai-Dong(朱爱东) . Chin. Phys. B, 2012, 21(4): 040306.
[4] Feasible schemes for quantum swap gates of optical qubits via cavity QED
Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) . Chin. Phys. B, 2011, 20(4): 040308.
[5] One scheme for remote quantum logical gates with the assistance of a classical field
Li Yan-Ling(李艳玲),Fang Mao-Fa(方卯发), and Zeng Ke(曾可) . Chin. Phys. B, 2010, 19(1): 010307.
[6] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[7] Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED
Jiang Chun-Lei(姜春蕾), Fang Mao-Fa(方卯发), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2008, 17(1): 190-193.
No Suggested Reading articles found!